期刊文献+

四类运动想象脑电信号特征提取与分类算法 被引量:20

Feature extraction and classification of four-class motor imagery EEG data
下载PDF
导出
摘要 针对脑机接口(BCI)系统中存在的信息传输速率较慢和脑电信号识别正确率较低的问题,对多通道四类运动想象脑电信号进行研究.通过对4种运动想象及休息状态脑电信号进行功率谱分析,合理确定预处理滤波器的最佳滤波频段,然后使用PW-CSP,Hilbert变换及归一化处理的方法,对四类运动想象脑电信号进行特征提取,分类算法分为特征信号算术求和与阈值比较的预分类过程及包含单个支持向量机(SVM)的细分类过程,算法复杂度明显比采用多个SVM组合的多类分类算法要低,为实现算法的在线应用打下基础.仿真结果表明,该算法分类正确率高,时间开销小,并且可以通过调节阈值,在正确率与算法复杂度之间获得平衡. Due to the low information transfer rate and low recognition accuracy in brain computer interface(BCI),feature extraction and classification of multi-channel four-class motor imagery for electroencephalogram(EEG)-based BCI was investigated.Optimum filtering band was obtained for power spectral analysis of four-class motor imagery and resting EEG.Then,the PW-CSP,Hilbert transformation and normalization were used to extract the feature of EEG data.Classification was divided into two steps,the first step was arithmetic summation and threshold comparison,Secondly a single support vector machine(SVM) was applied if the first step failed.The algorithm was simpler than combined SVM,which provided the foundation for on-line application.The experimental results show that the algorithm produces high classification accuracy and less time consumption,moreover,classification result can be further improved at the expense of algorithmic complexity by adjust the threshold.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第2期338-344,共7页 Journal of Zhejiang University:Engineering Science
关键词 脑机接口(BCI) 四类运动想象 特征提取 支持向量机(SVM) brain computer interface(BCI) four-class motor imagery feature extraction support vector machine(SVM)
  • 相关文献

参考文献23

  • 1WOLPAW J R,BIRBAUMER N,HEETDERKS W J,et al.Brain-computer interface technology:a review ofthe first international meeting[J].IEEE Transactions onrehabilitation Engineering,2000,8(2):164-173.
  • 2HU Jian-feng,XIAO Dan,MU Zheng-dong.Applica-tion of entropy in motor imagery EEG classification[J].International Journal of Digital Content Technology andits Applications,2009,3(2):83-90.
  • 3GHANBARI A A,KOUSARRIZI M R N,TESHNE-HLAB M,et al.Wavelet and hilbert transform-based braincomputer interface[C]∥Proceedings of the InternationalConference on Advances in Computational Tools for Engineer-ing Applications.Beirut:IEEE,2009:438-442.
  • 4WAN Bai-kun,LIU Yan-gang,MING Dong,et al.Feature recognition of multi-class imaginary movementsin brain-computer interface[C]∥Proceedings of the In-ternational Conference on Virtual Environments,Human-Computer Interfaces and Measurements Systems.HongKong:IEEE,2009:250-254.
  • 5PFURTSCHELLER G,DA SILVA F H L.Event-re-lated EEG/EMG synchronization and desynchroniza-tion:basic principles[J].Clinical Neurophysiology,1999,110(10):1842-1857.
  • 6MCFARLAND D J,ANDERSON C W,MLLER K R,et al.BCI meeting 2005-workshop on BCI signal pro-cessing:feature extraction and translation[J].IEEETransactions on Neural Systems and Rehabilitation Engi-neering,2006,14(2):135-138.
  • 7BASHASHATI A,FATOURECHI M,WARD R K,etal.A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J].Journal of Neural Engineering,2007,4:32-57.
  • 8DORNHEGE G,BLANKERTZ B,CURIO G,et al.Increase information transfer rates in BCI by CSP extensionto multi-class[C]∥Advances in Neural Information Pro-cessing Systems.Canada:MIT Press,2004:733-740.
  • 9DORNHEGE G,BLANKERTZ B,CURIO G,et al.Boosting bit rates in noninvasive EEG single-trial classi-fications by feature combination and multiclass para-digms[J].IEEE Transactions on Biomedical Engineer-ing,2004,51(6):993-1002.
  • 10WILSON J A,MELLINGER J,SCHALK G,et al.Aprocedure for measuring latencies in brain-computer in-terfaces[J].IEEE Transactions on Biomedical Engi-neering,2010,57(7):1785-1797.

二级参考文献20

  • 1李同磊,刘伯强,李可,于兰兰.基于脑电信号的手指动作识别[J].山东科学,2006,19(1):1-5. 被引量:2
  • 2Wolpaw JR, Birbaumer N, Heetderks W, et al. Brain-computer interface technology:a review of the first international meeting [J ]. IEEE Trans Rehabil Eng, 2000, 8(2) :164- 173.
  • 3Quadrianto N, GuanCunTai, Dat TH, et al. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface[A] In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering [C]. Piscataway, NJ, USA:IEEE, 2007. 219- 225.
  • 4Peters, BO, Pfurtscheller G., Flyvbjerg H. Automatic differentiation of multichannel EEG signals [ J]. Transactions on Biomedical Engineering 2001,48(1) : 111 - 116.
  • 5Wu Wei, Gao Xiaorong, Gao Shangkai. One-versus-the-best (OVR) algorithm: an extention of common spacial patterns(CSP) algorithm to muti-class case [ A ]. In : Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society,[C]. Piscataway, NJ, USA: IEEE-EMBS, 2005, 2387- 2390.
  • 6A. Schloegl, K. Lugger, G. Pfurtscheller. Using Adaptive Autoregressive Parameter for a Brain-Computer-Interface experiment [A]. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ], Piscataway, NJ, USA: IEEE, 1997.1533-1535.
  • 7Keim, ZA, Aunon JI. A new mode of communication between man and his surroundings[J]. IEEE Trans on Biomedical Engineering, 1990,31(12) : 1209 - 1214.
  • 8Wang Yijun, Gao Shangkai, Gao Xiaorong. Common spacial pattern method for charmel selection in motor imagery based brain-computer imerface [ A ]. In: Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ]. Piscataway, N J, USA: IEEE,2005. 5392 - 5395.
  • 9Molina G. G.. BCI adaptation using incremental-SVM learning[ A]. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering[C]. Piscataway, N J, USA: IEEE,2007. 337 - 341.
  • 10Pfurtscheller G, Muller-Putz, GR, Schlogl A, et al. 15 years of BCI research at graz university of technology current projects [ J ]. IEEE Trans Neural Syst Rehabil Eng, 2006,14(2):205- 210.

共引文献48

同被引文献109

引证文献20

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部