摘要
The paper is concerned with optimal control of backward stochastic differentiM equation (BSDE) driven by Teugel's martingales and an independent multi-dimensional Brownian motion, where Teugel's martingales are a family of pairwise strongly orthonormal martingales associated with L6vy processes (see e.g., Nualart and Schoutens' paper in 2000). We derive the necessary and sufficient conditions for the existence of the optimal control by means of convex variation methods and duality techniques. As an application, the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem, or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.
The paper is concerned with optimal control of backward stochastic differential equation (BSDE) driven by Teugel’s martingales and an independent multi-dimensional Brownian motion,where Teugel’s martin- gales are a family of pairwise strongly orthonormal martingales associated with Lévy processes (see e.g.,Nualart and Schoutens’ paper in 2000).We derive the necessary and sufficient conditions for the existence of the op- timal control by means of convex variation methods and duality techniques.As an application,the optimal control problem of linear backward stochastic differential equation with a quadratic cost criteria (or backward linear-quadratic problem,or BLQ problem for short) is discussed and characterized by a stochastic Hamilton system.
基金
supported by National Natural Science Foundation of China (Grant No. 11101090, 11101140, 10771122)
Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120002)
Innovation Team Foundation of the Department of Education of Zhejiang Province (Grant No. T200924)
Natural Science Foundation of Zhejiang Province (Grant No. Y6110775, Y6110789)
Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry