期刊文献+

多水平零膨胀计数模型在骨关节疼痛影响因素中的应用研究 被引量:4

A Multilevel Zero-inflated Count Model and its Application in a Influence Factor Study of the Joints Pain
下载PDF
导出
摘要 目的针对两地区村民骨关节调查资料组群结构且零过多问题,阐明多水平零膨胀计数回归模型。方法介绍多水平Poisson和多水平ZIP模型原理,进一步完成山西省农村地区居民风湿性骨关节疼痛部位数影响因素分析的多水平模型SAS软件实现。结果多水平ZIP回归部分的随机项表明,两调查地区不同村庄居民关节是否疼痛以及疼痛部位数差别有统计学意义。logistic回归估计参数表明年龄、婚姻状况和高血压是影响关节疼痛与否的主要因素。而Pois-son部分估计结果表明年龄、地区、性别和地区交互作用是居民骨关节疼痛部位数的主要因素。Vuong检验进一步证实多水平ZIP模型比多水平Poisson模型更优。结论多水平ZIP回归模型是解决调查研究中组群结构及零发生次数过多问题模型拟合的最佳选择。 Objective To use the multilevel zero-inflated count regression model for the data of the joints pain in rural areas with both clustered structure and excess zeros.Methods To introduce the multilevel Poisson and ZIP model,and to conduct the multilevel model for the factor analysis of the joints pain numbers of residents from rural area in Shanxi province using the SAS software.Results Random effects of the multilevel ZIP model indicate that these are significant differences of the probability of the pain and the number of painful parts with different villages.The logistic regression shows that age,marital status and hypertension are the main factors that affect the probability of pain,while the Poisson regression depicts that age,region,and the interaction of region with sex are related with the number of painful parts.Vuong's test further confirms that the multilevel ZIP model fit the data significantly better than the multilevel Poisson model.Conclusion The multilevel ZIP model is appropriate for the analysis of clustered count data with extra-zeros.
出处 《中国卫生统计》 CSCD 北大核心 2012年第1期44-46,共3页 Chinese Journal of Health Statistics
基金 山西省自然科学基金项目(2009011005-2) 山西省卫生厅科技攻关计划(200754) 国家青年科学基金项目(81001294)
关键词 组群结构 零过多 多水平零膨胀计数模型 Clustered data Excess zero Multilevel zero inflated count model
  • 相关文献

参考文献5

  • 1Goldstein H.Multilevel models3nd.London:Amold,2003.
  • 2Lambert D.Zero-inflated Poisson regression with an application to defects in manufacturing.Technometrics,1992,1(34):1-14.
  • 3Siddiqui O.Modeling clustered count and survival data with an application to a school-based smoking prevention study[thesis].Chicago:Center for health statistics,University of Illinois at Chicago,1996.
  • 4Wang K,Yau K,Lee A.A zero-inflated Poisson mixed model to analyze diagnosis related groups with majority of same-day hospital stays.Computer Methods and Program in biomedicine,2002,68:195-203.
  • 5Pinheiro J,Bates D.Approximations to the Log-likelihood Function in the Nonlinear Mixed-effects Model.Journal of Computational and Graphical Statistics,1995,1(4):12-35.

同被引文献42

  • 1卢亮宇,王予彬.膝骨关节炎疼痛机制及治疗研究现状[J].中国运动医学杂志,2007,26(4):512-516. 被引量:42
  • 2Jiang X,Huang B,Zaretzki RL,et al.Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models[J].Accid Anal Prev,2013,57:55-66.
  • 3Kilic D,Ozturk S.Gender differences in cigarette consumption in Turkey:Evidence from the Global Adult Tobacco Survey[J].Health Policy,2013.
  • 4Lu CY,Srasuebkul P,Drew AK,et al.Trastuzumab therapy in Australia:Which patients with HER2+ metastatic breast cancer are assessed for cardiac function[J].Breast,2013,22(4):482-487.
  • 5Haroon N,Inman RD,Learch TJ,et al.The Impact of TNF-inhibitors on radiographic progression in Ankylosing Spondylitis[J].Arthritis Rheum,2013.
  • 6Ritter AV,Bader JD,Leo MC,et al.Tooth-surface-specific effects of xylitol:randomized trial results[J].J Dent Res,2013,92(6):512-517.
  • 7Donaldson MG,Sobolev B,Cook WL,et al.Analysis of recurrent events:a systematic review of randomised controlled trials of interventions to prevent falls[J].Age Ageing,2009;38:151-5.
  • 8Khokan C Sikdar,Jdffrey Dowden,Reza Alaghehbandan,et al.Adverse Drug Reactions in Elderly Hospitalized Patients:A 12-Year Population-Based Retrospective Cohort Study[J].The Annals of Pharmacotherapy,2012,46(7):960-971.
  • 9C.E.Rose,S.W.Martin,K.A.Wannemudhler,et al.On the Use of Zero-Inflated and Hurdle Models for Modeling Vaccine Adverse Event Count Data[J].ouranl of Biopharmaceutical Statistics,2006,16(4):463-481.
  • 10A.L.Baughman.Mixture Model Framework Facilitates Understanding of Zero-Inflated and Hurdle Models for Count Data[J].Jouranl of Biopharmaceutical Statistics,2007,17(5):943-946.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部