期刊文献+

约束蚂蚁聚类算法

Constrained Ant Clustering Algorithm
下载PDF
导出
摘要 通过对真实世界蚁群的模拟仿真,提出一种基于随机游走的约束蚂蚁聚类算法来处理以must-link和can-not-link形式出现的约束聚类问题.在人工数据集和UCI标准数据集上的实验结果表明我们的算法优于无监督的蚁群聚类算法和COP-Kmeans算法. By simulating the clustering behaviors of the real-world ant colonies,we propose in this paper a constrained ant clustering algorithm based on random walk to deal with the constrained clustering problems with pairwise must-link and cannot-link constraints.Experimental results show that our approach is more effective on both synthetic datasets and UCI datasets compared with the unsupervised random walk ant-based clustering algorithm and the COP-Kmeans algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第4期169-172,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(61003180 61070047) 江苏省科技厅自然科学基金项目(BK2010318) 江苏省教育厅自然科学基金项目(09KJB20013B)
关键词 约束聚类 蚂蚁聚类 随机游走 constrained clustering ant clustering random walk
  • 相关文献

参考文献10

  • 1Zhu X. Semi-supervised learning with graphs [D]. USA: Carnegie Mellon University. 2005.
  • 2Wagstaff K, Cardie C, Rogers S, et al. Constrained k-means clustering with background knowledge[C]// Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, CA, USA: ACM, 2001:577-584.
  • 3Eric Bonabeau, Marco Dorigo, Guy Theraulaz. Swarminteihgence: from natural to artificial systems (santa fe institute studies in the sciences of complexity proceed- ings)[M]. USA: Oxford University Press, 1999.
  • 4Dorigo M, Bonabeau E, raulaz G. Ant algorithms and stigmergy[J]. Future Generation Computer Systems, 2000, 16(8):851-871.
  • 5Xiaohua Xu, Lin Chen, Ping He. A novel ant clustering algorithm based on cellular automata[J]. Web In telligence and Agent Systems, 2007, 5(1) :1-14.
  • 6He Y, Hui SC. Exploring ant-based algorithms for gene expression data analysis [J]. Artifl Intell Med. 2009, 47(2) :105-119.
  • 7E1-Feghi I, Errateeb M, Ahmadi M. Sid-Ahmed MA (2009) an adaptive ant-based clustering algorithm with improved environment perception[C] // Proceedings of the 2009 IEEE international conference on systems, man, and cybernetics. San Antonio:IEEE, 2009.
  • 8Abul Hasan, Mohamed, Ramakrishnan, et al. A sur- vey: hybrid evolutionary algorithms for cluster analysis[J]. Artificial Intelligence Review, 2011:1-26.
  • 9Ultsch A, Herrmann L. Automatic Clustering with U * C[R]. Technical Report, Dept. of Mathematics and Computer Science, University of Marburg. 2006.
  • 10Ultsch A. Emergence in Self-Organizing Feature Maps [C]// Proc Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld, Germany: [s. n]. 1,2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部