摘要
Fracture and ground vibration of rock subjected to different decoupling decked charges are investigated based on the numerical simulation. The dynamic pressure value is studied, which demonstrates that simulation of fracture zone is feasible. Attenuation index of dynamic pressure is 2.06, 2.05 and 1.93 for air, water and sand intervals respectively. The small attenuation of sand in- terval results in the large ground vibration. The predicted vertical vibration waveform and peak parti- cle velocities (PPV) in far-field are in agreement with the monitoring results. The results show that the air and water decked charges can improve the effect of rock fracture in near-field and reduce ground vibration in far-field.
Fracture and ground vibration of rock subjected to different decoupling decked charges are investigated based on the numerical simulation. The dynamic pressure value is studied, which demonstrates that simulation of fracture zone is feasible. Attenuation index of dynamic pressure is 2.06, 2.05 and 1.93 for air, water and sand intervals respectively. The small attenuation of sand in- terval results in the large ground vibration. The predicted vertical vibration waveform and peak parti- cle velocities (PPV) in far-field are in agreement with the monitoring results. The results show that the air and water decked charges can improve the effect of rock fracture in near-field and reduce ground vibration in far-field.