期刊文献+

一种改进的局部区域特征医学图像分割方法 被引量:4

An Improved Medical Image Segmentation Model with Local Region Features
下载PDF
导出
摘要 水平集分割方法中的Chan-Vese模型能够处理具有模糊边界和复杂拓扑结构的图像,但没有充分利用图像局部灰度的变化信息,致使其不能准确分割强度不均匀物体。针对这一问题对模型做了改进,引入局部灰度均值替换全局均值,以边界指示函数作权进行加权长度积分,加入使用双阱势的距离正则项来避免水平集重新初始化。试验结果表明:改进后的模型能够有效提高分割精度与效率,可以有效应用在医学图像的分割领域。 Although the conventional Chan-Vese model could process images with fuzzy boundary and complex topology,it could not segment objects with nonuniform grayscale accurately for the underutilization of the local diversity in an image.In this paper,a local weighted mean grayscale was brought in to replace the globle one. A boundary indicator was used to make the weighted length integral,and a distance regulation term with double-well potential was added to avoid the reinitialization,which makes some improvements to the CV model.Experiments show that the proposed model can effectively improve the segmentation precision and efficiency,and it is useful for medical image segmentation.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第2期30-33,6,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(61165002)
关键词 水平集方法 CV模型 距离正则化 图像分割 Level set method CV model Distance regularization Image segmentation
  • 相关文献

参考文献4

二级参考文献39

  • 1蒋晓悦,赵荣椿.一种改进的活动轮廓图像分割技术[J].中国图象图形学报(A辑),2004,9(9):1019-1024. 被引量:7
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3王伟静,陈家新.一种基于小波变换的医学断层图像插值方法[J].河南科技大学学报(自然科学版),2006,27(3):29-31. 被引量:1
  • 4S Osher, J A Sethian.Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988,79( 1 ) : 12 - 49.
  • 5S Esodoglu, P Smereka. A variational formulation for a level set representation of multiphase flow and area preserving curvature flow[J]. Commun. Math. Sci, 2008,6(1) : 125 - 148.
  • 6T Chan, L Vese. Active contours without edges[ J]. IEEE Image Proc,2001,10(2) :266 - 277.
  • 7Li C,Xu C, Gui C,M D Fox. Level set evolution without reinitialization: A new variational formulation[ A]. IEEE International Conference on Computer Vision and Pattern Recognition, Vol. 1[ C]. San Diego: IEEE Computer Society Press,2005.430 - 436.
  • 8V Caselles, R Kimmel, G Sapiro. Geodesic active contours[ J]. International Journal of Computer Vision, 1997, 22 ( 1 ) : 61 - 79.
  • 9Zhao HK, T Chan, B Merriman, S Osher. A variational level-set approach to multiphase motion [ J ]. Journal of Computational Physics, 1996,127:179 - 195.
  • 10D Mumford, J Shah. Optimal approximation by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathemalics, 1989,42 (5) : 577 - 685.

共引文献50

同被引文献46

  • 1杨敬辉,杨晶东.多假设跟踪的移动机器人SLAM算法[J].辽宁工程技术大学学报(自然科学版),2013,32(8):1107-1111. 被引量:2
  • 2Chiu L C,Chang T S,Chen J Y,et al.Fast SIFT Design for Real-Time Visual Feature Extraction[J].IEEE Transaction on Image Processing,2013,22(8):3158-3166.
  • 3Lowe D G.Object Recognition from Local Scale-invariant Features[C]//In International Conference on Computer Vision.Greece,Corfu,1999:1150-1157.
  • 4Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 5Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]//Proceedings of Computer Vision and Pattern Recognition. San Diego, CA : IEEE Computer Society,2005:886 - 893.
  • 6Heikkilt M,Pietikainen M,Schmid C. Description of Interest Regions with Local Binary Patterns[ J] .IEEE Conference on Pattern Recognition,2009,42(3 ) :425 - 435.
  • 7Yu J, Qin Z C, Wan T, et al. Feature Integration Analysis of Bag-of-Features Model for Image Retrieval [ J ] Neurocomputing, 2023,120 : 355 - 364.
  • 8Ojala T, Pietikanien M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions[ J]. Pattern Recognition, 1996,29 ( 1 ) :51 - 59.
  • 9Aleksic P S,Katsaggelos A K. Automatic Facial Expression Recognition Using Facial Animation Parameters and Multistream Hmms[J].IEEE Transactions on Information Forensics and Security,2006,(01):3-11.
  • 10Bartlett M,Littlewort G,Frank M. Recognizing Facial Expression:Machine Learning and Application to Spotaneous Behavior[J].IEEE Conference on Computer Vision and Pattern Recognition,2011,(01):568-573.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部