期刊文献+

基于移动代理WSN分布入侵检测研究 被引量:1

Mobile Agent-based Distributed Intrusion Detection System for Wireless Sensor Network
原文传递
导出
摘要 针对聚类无线传感器网络安全的问题,将移动代理技术与分布式入侵检测技术相结合,提出了一种基于移动代理的无线传感器网络分布式入侵检测方案,采用了多个代理模块进行分布式协作,运用一种基于聚类的分布式入侵检测算法,从节点上收集和处理数据,减少网络负载、促进效率平衡,能够满足WSNs的要求和限制。从而达到提高无线传感器网络的安全性、可靠性,降低入侵检测能量消耗的目的。 For the security problem of clustering-based wireless sensor networks and in combination of intrusion detection technology with the mobile agent technology,a distributed intrusion detection scheme for mobile agent-based wireless sensor network,with several agent blocks for distributed cooperation.Meanwhile,a clustering-based intrusion detection algorithm is applied to collecting and processing data form the node,thus to reduce network load,promote efficiency balance,meet the requirements and limitations of WSNs,and further more to improve the security and reliability of wireless sensor networks and lower the power consumption of intrusion detection.
作者 周奇
出处 《通信技术》 2012年第4期34-37,共4页 Communications Technology
关键词 无线传感器网络 分布式入侵检测 移动代理 能耗 wireless sensor network distributed intrusion detection mobile agent energy consumption
  • 相关文献

参考文献13

  • 1SILVA APDA. Decentralized Intrusion Detection in Wireless Sensor Networks[A].Canada:ACM,2005.16-23.
  • 2PATHANA S K. Security in Wireless Sensor Networks:Issues and Challenges Advanced Communication Technology[A].USA,IEEE Press,2005.20-22.
  • 3YANK Q.A Hybrid Intrusion Detection System of Cluster-based Wireless Sensor Networks[A]香港,2009411-416.
  • 4SU W T. eHIP:An Energy Efficient Hybrid Intrusion Prohibition System for Cluster-based Wireless Sensor Networks[J].Computer Networks,2007,(02):1151-1168.
  • 5ABDUVALIYEV A,LEE S Y,LEE Y K. Energy Efficient Hybrid Intrusion Detection System for Wireless Sensor Networks[A].USA,IEEE Press,2010.25-29.
  • 6ROMAN R. Applying Intrusion Detection Systems to Wireless Sensor Networks[A].USA,IEEE Press,2006.640-644.
  • 7KRONTIRIS I. Cooperative Intrusion Detection in Wireless Sensor Networks[A].Berlin,Heidelberg:Springer-Yerlag,2009.263-278.
  • 8RAMASWAMY S,RASTOGI R,SHIM K. Efficient Algorithms for Mining Outliers from Large Data Sets[A].New York,US:ACM Press,2000.427-438.
  • 9YANK Q;WANG S C;LIU C W.A Hybrid Intrusion Detection System of Cluster-based Wireless Sensor Networks[A]香港,2009411-416.
  • 10李志刚,屈玉贵,刘桂英.用无线传感器网络探测跟踪目标[J].信息安全与通信保密,2006,28(12):72-74. 被引量:12

二级参考文献21

  • 1常兴,刘斌.基于ARM的无线通信系统软硬件接口设计研究[J].北京邮电大学学报,2004,27(z2):153-156. 被引量:3
  • 2周怡頲,凌志浩,吴勤勤.ZigBee无线通信技术及其应用探讨[J].自动化仪表,2005,26(6):5-9. 被引量:328
  • 3王东,张金荣,魏延,曹长修,唐政.利用ZigBee技术构建无线传感器网络[J].重庆大学学报(自然科学版),2006,29(8):95-97. 被引量:106
  • 4Kubisch M, Karl H, Wolisz A, et al. Distributed algorithms for transmission power control in wireless sensor networks[J]. IEEE WCNC 2003, New Orleans, Louisiana, March 16-20, 2003.
  • 5Li N, Hou J C. Topology control in heterogeneous wireless sensor networks: Problems and solutions[C]. In: Proc 13^th Joint Confon IEEE Computer and Communications Societies(INFOCOM), 2004.
  • 6Younis O, Fahmy S. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach[C]. In: Proc 13^th Joint Conf on IEEE Computer and Communications Societies (INFOCOM), March 2004.
  • 7Santi P, Silence is golden with high probability: Maintaining a connected backone in wireless sensor networks[C]. In: 1^st European Workshop on Wireless Sensor Networks, Berlin, Jan 2004,
  • 8Pham T, Kim E, Moh M. On data wireless sensor networks[C]. On Broadband Networks 2004: aggregation quality and energy of Proceedings of the 1^st Intl, Conf. 730 732
  • 9Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks: A Survey[J]. Computer Networks, 2002, 38: 393-422.
  • 10Perrig A, Szewczyk R, Wen V, et al. SPINS: Security Protocols for Sensor Networks[J]. Wireless Networks, 2002, 8(05). 521-534.

共引文献59

同被引文献35

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2谷雨,赵佳枢,张天军,徐宗本.基于免疫多样性的分布式入侵检测算法[J].西安交通大学学报,2006,40(10):1052-1055. 被引量:6
  • 3刘远生辛一.计算机网络安全[M].北京:清华大学出版社2009.
  • 4LI W, XIANG D. Information-Theoretic Measures for A-nomaly Detection : Proceedings of the 2001 IEEE Sympo-sium on Security and Privacy[ C] . May, 2001:130-143.
  • 5Kumar S. Classification and Detection of Computer Intru-sions [D ]. Dissertation, Purdue University ,1995.
  • 6Lippman R, Haines J W, et al. Analysis and Results of the1999 DARPA Off-Line Intrusion Detection Evaluation : Pro-ceedings of the 3 rd International Workshop on Recent Ad-vances in Intrusion Detection[ C],2000: 162-182.
  • 7Dhurjati D, Bollineni P. A Fast Automaton - based Meth-od for Detecting Anomalous Program Behaviors : Proceed-ings of the 2001 IEEE Symposium on Security and Privacy[C]. Oakland,California. 2001 : 144-155.
  • 8Anderson J P. Computer Security Threat Monitoring andSurveillance[ R]. James P Anderson Co, Fort Washing-ton ,Pennsylvania, 1980.
  • 9Dorothy E. Denning. An Intrusion Detection Model[ J].IEEE transaction on software engineering, 1987,13(2):222-233.
  • 10CHEN S,TANG B, Schnackenberg D. The Common Intru-sion Detection Framework-Data Formats[R]. Internet DraftDraft-ietf-cidf-data-formats-00. txt,1998.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部