期刊文献+

最大熵原理研究二维有极分子电介质的极化规律 被引量:3

Using the Maximum Entropy Principle to Study Polarization of Two-dimensional Dielectric of Polar Molecules
下载PDF
导出
摘要 最大熵原理是自然界的一个基本原理,在很多领域得到了广泛应用。使用最大熵原理,研究了二维有极分子电介质在电场中的电极化规律。结果发现,当电场强度不大时,电极化强度与电场强度成正比关系;但当电场强度很大时,电极化强度与场强的线性关系不再成立,而呈现较复杂的非线性关系。 The maximum entropy principle is a basic principle in nature, and it has been widely used in vari- ous fields. The maximum entropy principle is used to study polarization of two-dimensional dielectric of polar mole- cules. Result shows that when electric field strength isn' t very strong, the electric polarization intensity is propor- tional to electric field strength. However, when electric field strength is very strong, linear relationship between the electric polarization intensity and the electric field strength doesn't exist, and in this case there is a complex nonlinear relationship between them.
作者 晋宏营
出处 《科学技术与工程》 北大核心 2012年第10期2407-2409,2414,共4页 Science Technology and Engineering
基金 陕西省教育厅科学研究项目(2010JK933) 榆林学院高学历人才科研启动基金项目(11GK04)资助
关键词 最大熵原理 电介质 电极化 二维系统 maximum entropy principle dielectric electric polarization two-dimensional system
  • 相关文献

参考文献9

  • 1赵凯华;陈熙谋.电磁学[M]北京:高等教育出版社,2005207-214.
  • 2郭硕鸿.电动力学[M]北京:高等教育出版社,200818-19.
  • 3Jaynes E T. Information theory and statistical mechanics[J].Physical Review,1957,(04):620-630.doi:10.1103/PhysRev.106.620.
  • 4Jaynes E T. Information theory and statistical mechanics Ⅱ[J].Physical Review,1957,(02):171-190.
  • 5Gerasimov D N,Sinkevich O A. Boiling:Size distribution of bubbles as demanded by the principle of maximum information[J].High Temperature,2004,(03):489-492.
  • 6汪小龙,袁志发,郭满才,宋世德,张全启,包振民.最大信息熵原理与群体遗传平衡[J].Acta Genetica Sinica,2002,29(6):562-564. 被引量:49
  • 7Miyano H. Identification model based on the maximum information entropy principle[J].Journal of Mathematical Psychology,2001,(01):27-42.
  • 8杨雪特.二维理想气体的压强和物理吸附[J].内江师范学院学报,2004,19(4):22-25. 被引量:2
  • 9郭凌伟,徐宏华.低温二维电子气体的比热容[J].上海交通大学学报,2002,36(2):157-160. 被引量:2

二级参考文献15

  • 1赵凯华.定性与半定量物理学[M].北京:高等教育出版社,1994.77-79.
  • 2[1]Zawadgki W, Lassing K. Specific heat and magneto-thermal oscillations of two-dimensional electron gas in a magnetic field[J]. Solid State Communications,1984,50:537-539.
  • 3[2]Gornik E, Lassing R, Strasser G. Specific heat of two-dimensional electron gas in GaAs-GaAlAs multilayers[J]. Phys Rev Lett,1985,54:1820-1822.
  • 4[3]Isihara A, Hojima D Y. The temperature and density dependences of the electronic specific heat[J]. Physica,1974,77:469-486.
  • 5[4]Fetter A L, Walecka J D. Quantum theory of many-particle system[M]. Tokyo: McGraw-Hill International,1971.
  • 6[5]Rebei A, Hitchon W N G. On the cancellation of the TlnT in the exchange energy at low temperature[J]. Physics Letters A,1996,224:127-132.
  • 7[6]Chou K, Su Z, Hao B, et al. Theory of the closed-time path Green functions[J]. Phys Rep,1985,118:1-120.
  • 8[7]Xu H H, Tsai C H. Perturbative expansion of the closed-time-path Green function approach[J]. Phys Rev A,1990,41:53-59.
  • 9[8]Xu H H. Diaganalization of Dyson series in the closed-time path formalism of thermal field theory[J]. Phys Lett B,1995,342:219-223.
  • 10[9]Maldague P F. Many-body corrections to the polarizability of the two-dimensional electron gas[J]. Surface Science,1978,73:296-302.

共引文献49

同被引文献21

  • 1周旭升,李圣怡,郑子文.基于最大熵原理的平面研抛工艺参数优化[J].中国机械工程,2005,16(11):1001-1004. 被引量:4
  • 2谭涛,李鹤龄.统计力学基本假设的教学更新[J].大学物理,1997,16(1):44-45. 被引量:6
  • 3王诚泰.统计物理学[M].北京:清华大学出版社,1997.
  • 4王鹏,韩敬.朗之万函数与布里渊函数的一些近似公式的推导[J].安庆师范学院学报(自然科学版),2007,13(2):87-89. 被引量:3
  • 5Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957 , 106(4) : 620-630.
  • 6Luo L F. Theoretic-physical approach to molecular biology. Shang- hai: Shanghai Scientific and Technical Publishers, 2004.
  • 7Banavar J R, Maritan A, Volkov I. Applications of the principle of maximum entropy: from physics to ecology. Journal of Physics: Con- densed Matter, 2010 , 22 :.
  • 8Plastino A, Curado E M F. Equivalence between maximum entropy principle and enforcing dU = TdS. Physical Review E, 2005, 72 : 047103.
  • 9Jin I-I Y, Luo L F, Zhang L R. Using estimative reaction free energy to predict splice sites and their flanking competitors. Gene, 2008 , 424(1-2) : 115-120.
  • 10马文蔚.物理学[M].5版.北京:高等教育出版社,2010:247.253.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部