期刊文献+

二维SH波方程的半解析解及其数值模拟 被引量:10

Semi-analytical solutions and numerical simulations of 2D SH wave equation
下载PDF
导出
摘要 本文以波动理论为基础,半解析化求解地震勘探中常用的SH波方程.获得的主要结果包括:给出了二维均匀介质中SH波方程的解析解;利用Cagniard-de Hoop方法详细推导了二维双层介质中SH波方程的解析解,获得了透射波的解析解表达式.同时,基于SH波方程的解析表达式,给出了包含各种波(如直达波、反射波、首波以及透射波)的解析解和波形图.对于比较复杂的积分型解析解,利用数值积分方法给出了数值结果,并与优化的近似解析离散化方法(ONADM)和4阶Lax-Wendroff修正方法(LWC)的数值结果进行了比较,以验证解析解的正确性.本文的研究成果有望在检验波动方程数值新方法的有效性、波传播理论分析等方面得到应用. In this paper,we show the analytical solutions of the SH-wave equation based on wave propagation theories.The main results include the analytical solutions of 2D SH-wave equations in the homogeneous medium,the analytical solutions of reflected SH-wave in a two-layer medium derived in detail by using the Cagniard-de Hoop method;we also obtain the analytical solutions for the transmitted SH-wave.Meanwhile,we present some waveforms of various waves including direct wave,reflected wave,head wave,and transmitted wave computed by the analytical solutions of the SH-wave.We present some numerical results by using numerical integral algorithms for the complex integral solutions,and compare the analytical solutions with the numerical results computed by the numerical methods including the optimal nearly analytical discrete method(ONADM) and the fourth-order Lax-Wendroff correction(LWC) scheme to verify the correctness of the numerical methods.The analytical solutions obtained in this paper have great potentials in the applications of testing the new methods for solving the wave equations and the theoretical analysis of wave propagation.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2012年第3期914-924,共11页 Chinese Journal of Geophysics
基金 国家杰出青年科学基金(40725012) 清华大学基础研究基金(2010THZ)资助
关键词 SH波 解析解 半解析解 Cagniard-de Hoop方法 SH-wave Analytical solutions Semi-analytical solutions Cagniard-de Hoop method
  • 相关文献

参考文献15

  • 1Dablain M A. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1) : 54-56.
  • 2Yang D H, Teng J W, Zhang Z J, et al. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bull. Seism. Soc. Am. , 2003, 93 (2) : 882-890.
  • 3Yang D H, Peng J M, Lu M, et al. Optimal nearly analytic discrete approximation to the scalar wave equation. Bull. Seism. Soc. Am. , 2006, 96(3): 1114-1130.
  • 4杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟[J].地球物理学报,2002,45(4):575-583. 被引量:83
  • 5王妙月,郭亚曦,底青云.二维线性流变体波的有限元模拟[J].地球物理学报,1995,38(4):494-506. 被引量:13
  • 6邓玉琼,张之立.弹性波的三维有限元模拟[J].地球物理学报,1990,33(1):44-53. 被引量:11
  • 7Levander A R. Fourth order finite-difference PSV seismograms. Geophysics, 1988, 53(11): 1425-1436.
  • 8Komatitsch D, Barnes C, Tromp J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 2000, 65(4): 1251-1260.
  • 9Ewing W M, Jardetzky W S, Press F. Elastic Waves in Layered Media. New York: McGraw-Hill Book Company Inc. , 1957.
  • 10de Hoop A T. A modification of Cagniard' s method for solving seismic pulse problems. Appl. sci. Res. (section B), 1960, 8(1): 349- 356.

二级参考文献14

共引文献102

同被引文献84

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部