期刊文献+

关系型数据库中不确定性数据的Top-k查询研究 被引量:3

STUDY ON Top-k QUERY OF UNCERTAINTY DATA IN RELATIONAL DATABASE
下载PDF
导出
摘要 Top-k查询在传统的存储确定性数据的关系型数据库中得到了广泛的应用,但是对于存储不确定性数据的数据库,Top-k查询必须结合元组的分值和不确定性来处理。已有的Top-k查询没有很好地结合元组的分值和不确定性,因此,定义一种新的针对不确定性数据的Top-k查询语义,并且实现了查询算法,在新语义下,计算第i位排名时考虑了第i-1位元组,能够更好地权衡分值和不确定性。不同数据集上的实验显示,该算法是有效的。 Top-k query has been widely applied in traditional relational databases storing the deterministic data,but for the databases storing uncertainty data.Top-k query have to process in conjunction with the score and uncertainty of tuples.Existing Top-k query does not combine them well,therefore a new semantics of Top-k query for uncertainty data is defined,and the query algorithm is implemented.In this new semantics,the tuple at rank i-1 is considered when computing the tuple at rank i,so it better balances the score and uncertainty of tuples.Experiments on different data sets demonstrate the efficiency of the algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期186-187,212,共3页 Computer Applications and Software
关键词 不确定性 关系型数据库 TOP-K Uncertainty Relational database Top-k
  • 相关文献

参考文献9

  • 1Cormode G,Li F,Yi K. Semantics of ranking queries for probabilistic data and expected ranks[A].2009.
  • 2Mohamed A Soliman,Ihab F ILYyAS,Kevin Chen-Chuan Chang. Top-k Query Processing in Uncertain Databases[A].Istanbul,Turkey,2007.896-905.
  • 3Ming Hua,Jian Pei,Wenjie Zhang. Efficiently Answering Probabilistic Threshold Top-k Queries on Uncertain Data[A].2008.1403-1405.
  • 4Cheqing Jin,Ke Yi,Lei Chen. Sliding-Window Top-k Queries on Uncertain Streams[J].Proceedings of the VLDB Endowment,2008,(01):301-312.
  • 5Ge T,Zdonik S,Madden S. Top-k queries on uncertain data:on score distribution and typical answers[A].Providence,Rhode Island,USA,2009.
  • 6刘德喜,万常选,刘喜平.不确定数据库中基于x-tuple的高效Top-k查询处理算法[J].计算机研究与发展,2010,47(8):1415-1423. 被引量:4
  • 7周傲英,金澈清,王国仁,李建中.不确定性数据管理技术研究综述[J].计算机学报,2009,32(1):1-16. 被引量:185
  • 8Green T J,Tannen V. Models for incomplete and probabilistic information[J].IEEE Data Engineering Bulletin,2006,(01):17-24.
  • 9张硕,高宏,李建中,邹兆年.不确定图数据库中高效查询处理[J].计算机学报,2009,32(10):2066-2079. 被引量:24

二级参考文献129

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 3崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展,2007,44(4):630-635. 被引量:14
  • 4Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 5Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 6Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 7Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188
  • 8Cavallo R, Pittarelli M. The theory of probabilistic databases//Proceedings of the 13th International Conference on Very Large Data Bases. Brighton, 1987:71-81
  • 9Barbara D, Garcia-Molina H, Porter D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 1992, 4(5): 487-502
  • 10Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32-66

共引文献205

同被引文献25

  • 1李欣荣.面向服务的数字图书馆QGSA-DQP分布式信息查询研究[J].现代情报,2007,27(9):106-108. 被引量:7
  • 2王潇,等.网内查询处理中的一种基于数据流共享的过滤查询算法[J].计算机研究与发展,2009,(46):275-279.
  • 3O'Connor BD, etc. SeqWare Query Engine: storing and searching sequence data in the cloud [J]. BMC Bioinformat- ics,2010,11 (12):S2.
  • 4Johannes Fischer, Volker Heun. Space-Efficient Preprocess- ing Schemes for Range Minimum Queries on Static Arrays [J]. SIAM J. on Computing,2011,40(2):465-492.
  • 5Silberstein A, Braynard R, Ellis C, et al. A sampling based ap- proach to optimizing top-k queries in sensor networks. Proceedings of the 22nd International Conference on Data Engineering (ICDE), At- lanta, GA, USA, 2006. Washington, DC, USA : IEEE Computer Society, 2006:68-80.
  • 6Kawashima H, Kitagawa H,Li X. Complex event processing over un- certain data streams. Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Washington, 2010 : 521-526.
  • 7Leung C K S, Hao B Y, Jiang F. Constained frequent itemset mining from uncertain data streams. Proceedings of the IEEE 26thinternational conference on data engineering workshops, Long Beach,2010 : 120-127.
  • 8Xi Zhang, Chomicki J. Semantics and evaluation of top-k queries in probabilistic databases. Distributed and Parallel Databases, 2009 ; 26 ( 1 ) : 67-126.
  • 9Soliman M A, Iiyas I F, Chang K C. Top-kquery processing in un- certain database. Proceedings of the 23rd IEEE International Confer- ence on Data Engineering, Istanbul, 2007:896-905.
  • 10Hua M, Pei J, Zhang W J, et al. Efficiently answering probabilistic threshold Top-K queries on uncertain data. Proceedings of the 24th IEEE International Conference on Data Engineering, Washington, 2008 ; 1403-1405.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部