期刊文献+

EKF、PF在目标跟踪中的研究 被引量:3

Research of EKF、PF in the target tracking
下载PDF
导出
摘要 介绍两种目标跟踪算法—扩展卡尔曼滤波器(Extended Kalman Filter,EKF)、粒子滤波器(Particle filter,PF)。EKF利用泰勒级数方法,将非线性问题转化到线性空间,再利用卡尔曼滤波器进行滤波,并达到一阶估计精度。PF是一种采用蒙特卡罗采样的贝叶斯滤波方法,它将复杂的目标状态分布表示为一组加权值,通过寻找在粒子滤波分布中最大权值的粒子来确定目标最可能所处的状态分布,已成为复杂环境下进行目标跟踪的最好的方法。文中通过仿真实验,对二者的性能进行了仿真比较,结果证明在复杂的非高斯非线性环境中,PF的性能明显优于EKF,但计算复杂,耗时长。 This paper presents two target tracking algorithm,EKF and PF.By using Taylor series,EKF transforms nonlinear problem into linear space,then using Kalman filter to estimate the results to achieve the first order accuracy.PF is a Bayesian filtering adopted by Monte Carlo sampling method.The complex target state distribution is expressed as a set of weights in this filter.By finding the largest weight particles in the particle filter to determine the most likely target has been proved as the best way to track target in a complex environment.By simulation experiments,their performances are compared.The results prove the tracking performance of PF is much better than EKF in complex environment,but computation of PF is much larger than EKF.
出处 《电子设计工程》 2012年第7期56-57,62,共3页 Electronic Design Engineering
关键词 目标跟踪 扩展卡尔曼滤波器 粒子滤波器 非线性滤波 target tracking extended Kalman filter particle filter nonlinear filtering
  • 相关文献

参考文献7

  • 1Kalman R E. A new approach to linear fihering and prediction problems[J].Journal of Basic Engineering,Transactions of the ASME,1960,(01):35-45.
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3Gordon N J,Salmond D J,Smith A F M. A novel approach to nonlinear1 non-gaussian bayesian state estimatior[J].IEE Proceedings-Part F:Communications,Radar and Signal Processing,1993,(02):1072113.
  • 4胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 5朱志宇.粒子滤波算法及其应用[M]北京:科学出版社,2010.
  • 6王志刚,芮国胜,胡昊.UPF算法及其在目标跟踪中的应用[J].雷达科学与技术,2005,3(1):20-24. 被引量:12
  • 7Doucet A,de Freitas J,Gordon N. Sequential Monte Carlo Methods in Practice[M].New York:springer-verlag,2001.

二级参考文献71

  • 1JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 2ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 3BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 4BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 5HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 6HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 7ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.
  • 8GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F, 1993, 140(2) :107 - 113.
  • 9LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems [ J ]. J of the American Statistical Association,1998, 93(443) :1032 -1044.
  • 10DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10( 1 ) :197 -208.

共引文献357

同被引文献13

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部