期刊文献+

基于方向特征及引力模型的路面裂缝检测 被引量:5

Pavement Crack Detection Based on Direction Feature and Gravitational Model
下载PDF
导出
摘要 针对全局性路面裂缝检测方法的局限,提出了一种基于方向特征及引力模型的路面裂缝检测方法.算法首先根据裂缝的延伸性及局部过渡性,搜索裂缝端点,并设计了反映裂缝线型特征的方向因子及方向导数区分度判据,使裂缝判别局限在裂缝端点延伸方向的局部邻域内,有效地阻止了非裂缝区域冗余信息的引入.进一步根据人类判别裂缝的视觉特性,借鉴物理学原理建立了裂缝引力模型,增强了噪斑存在时裂缝连接的鲁棒性.结合颜色距离,设计了裂缝延伸与连接的多判据判别函数,实现对裂缝像素区域的判别检测.实验结果表明所提方法的准确性. A pavement crack detection algorithm was proposed on the basis of directional features and gravitational model to overcome the shortcomings of the existing global methods.According to the extension and local transition of cracks,the endpoints of cracks were firstly searched.The direction factors and directional derivative discrimination criterion were designed,which reflect the linear features of cracks.Crack discrimination was localized in the possible neighborhood to prevent effectively the introduction of redundant information.Based on the human vision characteristics and physics theory,a crack gravitational model was designed to improve the robustness of crack connection under the noise environment.By combining color distance,a multiple criteria discriminant function of crack extension and connection was designed to detect crack pixel area.The experimental results indicated the validity of the proposed method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期469-472,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60874103) 国家青年科学基金资助项目(61005032) 辽宁省自然科学基金资助项目(20102062) 沈阳市科技计划项目(F10-147-9-00)
关键词 裂缝检测 方向因子 方向导数区分度 引力模型 裂缝连接 crack detection direction factor directional derivative discrimination criterion gravitational model crack connection
  • 相关文献

参考文献8

  • 1唐磊,赵春霞,王鸿南,邵文泽.基于图像三维地形模型的路面裂缝自动检测[J].计算机工程,2008,34(5):20-21. 被引量:28
  • 2Zhang H Q,Wang Q.Use of artificial living system forpavement distress survey[C]∥The 30th Annual Conference ofThe IEEE Industrial Electronics Society.Busan,2004:2-6.
  • 3马常霞,赵春霞,胡勇,王鸿南,陈海燕.结合NSCT和图像形态学的路面裂缝检测[J].计算机辅助设计与图形学学报,2009,21(12):1761-1767. 被引量:45
  • 4SinhaS K,Paul W F.Automated detection ofcarcks in buriedconcrete pipe images[J].Automation in Construction,2006,15(11):58-72.
  • 5Liu X L,Li Q Q.An algorithm to pavement crackingdetection based on mult-i scale space[C]∥Remotely SensedData and Information.Boston:The International Society forOptical Engineering,2006:11-14.
  • 6Huang Y X,Xu B G.Automatic inspection of pavementcracking distress[J].Journal of Electronic Imageing,2006,15(1):1-6.
  • 7梁志勇,龙丽芳,黄世斌.基于数字图像处理的沥青路面破损检测技术[J].重庆建筑,2009,32(1):40-42. 被引量:4
  • 8Kittler J,Illinworth J.Minimum error thresholding[J].Pattern Recognition,1986,19:41-47.

二级参考文献19

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2高建贞,陆建峰,赵春霞,唐振民,杨静宇.基于多级拟合的道路病害自动检测与识别[J].计算机工程与应用,2004,40(22):220-223. 被引量:5
  • 3张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 4王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 5Pynn J, Wright A, Lodge R. Automatic identification of cracks in road surfaces [C] //Proceedings of the 7th IEEE International Conference on Image Processing and its Applications, Manchester, 1999:671-675.
  • 6Bray J, Verma B, Li X, et al. A neural network based technique for automatic classification of road cracks [C] // Proceedings of International Joint Conference on Neural Networks, Vancouver, 2006:907-912.
  • 7Burt P J, Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, 1983, 31(4): 532-540.
  • 8Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14 (12) : 2091- 2106.
  • 9da Cunha A I., Zhou J P, Do M N. The nonsubsampled contourlet transform., theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3089-3101.
  • 10Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.

共引文献71

同被引文献78

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部