期刊文献+

公交运营的协控准点滞站调度模型 被引量:7

Coordinated schedule-based holing model for bus operation
下载PDF
导出
摘要 滞站调度策略是公交日常运营中最常用的一种控制策略.针对传统滞站策略存在较高误控率的问题,提出一种新型的协控准点滞站调度策略,该策略依据车辆在当前站点和下一站点的准点信息,来综合判断是否需要对该车辆进行滞站控制.为了获得车辆在下一站点的发车时间信息,设计了基于支持向量机的公交旅行时问预测模型.最后,利用基于Paramics的仿真实例对本文提出的预测模型和调度策略进行了验证,结果表明,基于支持向量机的预测模型具有较高的预测精度,可以为协控滞站调度策略提供较可靠的依据;协控准点滞站调度策略比传统的滞站调度策略具有更低的误控率和较少的乘客等待费用. Holding strategy is one of the most commonly used operation control strategies. This paper presents an improved schedule-based holding strategy, in which a support vector machine (SVM)-based model for fore- casting the early bus departure time from the following stop, is developed. This strategy judges whether an early bus should be held according to the on-time information of the bus at the current stop and the following stop. Finally, a simulation-based case is used to illustrate the performance of SVM-based model and the im- proved holding strategy. Results show that the SVM-based model can achieve accurate prediction and provide the improved holding strategy with reliable information. It is shown that the improved holding strategies show better performance than the traditional schedule-based holding strategies.
作者 李大铭 于滨
出处 《系统工程学报》 CSCD 北大核心 2012年第2期248-255,共8页 Journal of Systems Engineering
基金 辽宁省百千万人才工程基金资助项目(2008921081) 国家自然科学基金资助项目(51108053)
关键词 公交调度 滞站调度策略 支持向量机 bus operation coordinated schedule-based holding strategy support vector machine(SVM)
  • 相关文献

参考文献15

  • 1Lin G,Liang P,Schonfeld P. Adaptive Control of Transit Operations[MD-26-7002][R].Maryland:University of Maryland,1995.1-53.
  • 2Turnquist M A,Blume S W. Evaluating potential effectiveness of headway control strategies for transit systems[J].Transportation Research Record,1980,(01):25-29.
  • 3Sheu J B,Chou Y H,Chen A. Stochastic modeling and real-time prediction of incident effects on surface street traffic congestion[J].Applied Mathematical Modelling,2004,(05):445-468.
  • 4Stephanedes Y J,Kwon E,Michalopoulos P. On-line diversion prediction for dynamic control and vehicle guidance in freeway corridors[J].Transportation Research Record,1990,(01):11-19.
  • 5Okutani I,Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filter theory[J].Transportation Research,1982,(01):1-11.
  • 6Chien S,Ding Y,Wei C. Dynamic bus arrival time prediction with artificial neural networks[J].Journal of Transportation Engineering American Society of Civil Engineers,2002,(05):429-438.
  • 7黄溅华,关伟,张国伍.公共交通实时调度控制方法研究[J].系统工程学报,2000,15(3):277-280. 被引量:12
  • 8谢秉磊,李军,郭耀煌.有时间窗的非满载车辆调度问题的遗传算法[J].系统工程学报,2000,15(3):290-294. 被引量:86
  • 9Vapnik V N. The Nature of StatisticalLearning Theory[M].New York:springer-verlag,2000.
  • 10唐万梅.基于灰色支持向量机的新型预测模型[J].系统工程学报,2006,21(4):410-413. 被引量:36

二级参考文献60

共引文献196

同被引文献57

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部