期刊文献+

基于凸松弛方法的医学B超图像快速分割 被引量:3

Fast B-ultrasound Image Segmentation Based on a Convex Relaxation Method
下载PDF
导出
摘要 利用活动轮廓线方法进行图像分割的一个重要缺陷是目标函数是非凸的,这不仅使得分割结果容易陷于局部极小,而且还使得一些快速算法无法开展.本文首先从贝叶斯风险估计的方法出发,针对B超幅度图像,给出一种基于Rayleigh分布的活动轮廓线模型.然后结合凸松弛的方法,得到一个新的放松的凸模型.原有模型和放松后模型的关系可由定理1给出.最后结合分裂Bregman算法,给出基于B超分割模型的快速算法.与传统梯度下降法相比较,本文提出的算法不仅能得到全局最优解,而且在算法收敛速度上也大大优于梯度下降法. One main drawback of active contour method applied to image segmentation is that the objective function is not convex.The solution of a non-convex minimization problem is prone to get stuck in a local minima,and some fast algorithms to convex optimization problems can not be used in a non-convex active contour model.Using a Bayesian risk method,this paper presents a new level set model for B-ultrasound image segmentation based on a Rayleigh distribution.The directly obtained model is not convex.However,we can get a new relaxed convex model by using a convex relaxation method.The relation between the directly obtained model and the relaxed convex model is given by a theorem.Then,a split Bregman algorithm is incorporated to propose a fast algorithm to solve the relaxed convex model.Compared with the traditional gradient descent method,the proposed method can not only get a global minima,but also is quite faster than gradient descent method.
作者 黄杰 杨孝平
出处 《自动化学报》 EI CSCD 北大核心 2012年第4期582-590,共9页 Acta Automatica Sinica
基金 国家自然科学基金(11101218) 江苏省研究生创新基金(CX10B-129Z)资助~~
关键词 医学B超 活动轮廓 贝叶斯风险 凸松弛 分裂Bregman Medical B ultrasound active contour Bayesian risk convex relaxation split Bregman
  • 相关文献

参考文献3

二级参考文献49

  • 1刘国才,王耀南.基于水平集逐层迭代算法的多层Mumford-Shah图像分割、去噪与重建模型[J].自动化学报,2006,32(4):534-540. 被引量:6
  • 2刘国才,王耀南.多层Mumford-Shah向量值图像分割、去噪与重建模型[J].自动化学报,2007,33(6):602-607. 被引量:5
  • 3Yang J, Duncan J S. 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Medical Image Analysis, 2004, 8(3): 285-294
  • 4Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journa2 of Computational Physics, 1988, 79(1): 12-49
  • 5Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces. Journal of Computational Physics, 1995, 118(2): 269-277
  • 6Zeng X L, Staib L H, Schultz R T, Duncan J S. Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging, 1999, 18(10): 927--937
  • 7Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models - their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59
  • 8Leventon M, Grimson E, Faugeras O. Statistical shape influence in geodesic active contours. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Islands, USA: IEEE, 2000. 316-323
  • 9Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A. A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 2003, 22(2): 137-154
  • 10Mumford D, Shah J. Optimal approximation by piecwise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(4): 577-685

共引文献67

同被引文献26

  • 1Makarau A, Richter R, Muller R, Reinartz P. Adaptive shadow detection using a blackbody radiator model. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2049-2059.
  • 2Chung K, Lin Y, Huang Y. Efficient shadow detection of color aerial images based on successive thresholding scheme. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 671-681.
  • 3Amato A, Mozerov M G, Bagdanov A D, Gonzalez J. Accurate moving cast shadow suppression based on local color constancy detection. IEEE Transactions on Image Processing, 2011, 20(10): 2954-2966.
  • 4Liu J H, Fang T, Li D R. Shadow detection in remotely sensed image based on self-adaptive feature selection. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5092-5103.
  • 5Chan T, Vese L. Active contour without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 6Li C M, Huang R, Ding Z H, Gatenby J C. A level set method for image segmentation in the presence of intensity in homogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.
  • 7Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.
  • 8Adeline K R M, Chen M, Briottet X, Pang S K, Paparoditis N. Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 21-38.
  • 9张海霞,卞正富.遥感影像植被信息提取方法研究及思考[J].地理空间信息,2007,5(6):65-67. 被引量:17
  • 10柳稼航,杨建峰,方涛.彩色遥感影像阴影颜色特性分析[J].光子学报,2009,38(2):441-447. 被引量:9

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部