期刊文献+

低碳钢表面激光直接镀Ti层中裂纹形成的研究 被引量:1

STUDY ON CRACKS IN LASER DIRECT-CLADDED TITANIUM LAYER ON LOW CARBON STEEL
原文传递
导出
摘要 在不添加中间层的基础上,通过调控激光熔覆工艺在低碳钢表面获得均匀、无裂纹、Ti含量超过99%的镀Ti层,并采用数值方法模拟激光熔覆过程,分析了镀Ti层内的温度场和应变场.结合实验和模拟结果、相图和EDS分析,发现熔覆过程中镀Ti层和基体间形成可能由TiFe、共晶金属间化合物(TiFe+β-Ti)和少量α-Ti组成的界面层,该界面层具有本征脆性,极易形成裂纹,且此裂纹无法消除;镀Ti层内裂纹产生的根本原因是在脆性温度区内产生的拉伸应变超过了金属的临界塑形.可通过减少线能量而减少裂纹驱动力,从而消除镀Ti层内的裂纹,获得均匀、无裂纹的镀Ti层. By adjusting laser power and nozzle speed in laser cladding technology,crack-free titanium layer with even thickness and titanium mass percentage over 99%,was obtained on the substrate of low carbon steel without any intermediate layer when heat input was between 12—20 J/mm.The temperature field and the mechanical strain were simulated.Together with phase diagram and EDS,it was found that an interface zone,consisted of TiFe,(TiFe+/3-Ti) eutectic com- pound and a-Ti,was formed between the titanium layer and the substrate.The interface zone is brittle and cracks occur in it.In titanium layer crack also occur if the mechanical strain exceeds the critical plasticity of metal.By reducing heat input,the mechanical strain decreases,thus a crack-free titanium layer with even thickness can be obtained.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2012年第2期142-147,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50505019,50935008和50975268 教育部新世纪优秀人才项目NCET-07-0503 浙江省科技计划项目2009C21019资助~~
关键词 低碳钢 镀TI 激光熔敷 裂纹 有限元分析 应变分析 low carbon steel clading Ti laser cladding crack finite element analysis strain analysis
  • 相关文献

参考文献4

二级参考文献94

共引文献104

同被引文献40

  • 1马海波,张维平.钛合金表面激光熔覆钴基复合涂层的组织和性能[J].稀有金属材料与工程,2010,39(12):2189-2192. 被引量:20
  • 2刘红宾,王存山,高亚丽,迟丽娜.镁合金表面宽带激光熔覆Cu-Zr-Al合金涂层[J].应用激光,2005,25(5):299-302. 被引量:13
  • 3尹延西,王华明.激光熔覆Cu_(ss)/Cr_5Si_3金属硅化物复合涂层组织及耐磨性的研究[J].摩擦学学报,2006,26(3):214-217. 被引量:10
  • 4李强,陈彦斌,欧阳家虎,雷廷权,杨德庄.激光熔覆耐磨涂层的研究现状与展望[J].宇航材料工艺,1997,27(1):13-18. 被引量:20
  • 5Boas M, Bamberger M, Revez G. Laser-alloying of a plasma-sprayed WC/Co layer to enhance wear properties [J]. Surface and Coatings Technology, 1990,42(2): 175-186.
  • 6Abbas G, West D R F. Laser surface cladding of stellite and stellit-SiC composite deposits for enhanced hardness and wear [J]. Wear, 1991,143(2) :353-363.
  • 7Nagarathnam K, Komvopoulos K. Microstructual and micro- hardness characteristics of laser-sysnthesized Fe-Cr-W-C coat- ings [J]. Metallurgical and Materials Transcation A,1995,26 (8):2131-2139.
  • 8Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6(5): 299-303.
  • 9Zhang K B, Fu Z Y, Zhang J Y, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAI high-entropy alloy [J]. Journal of Alloys and Compounds, 2010,502(2) :295-299.
  • 10Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in AICoCrFeNi (0 < x<2) high-entropy alloys[J]. Materials Science and Engineering B ,2009,163(3): 184-189.

引证文献1

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部