期刊文献+

基于PCA扩展的判别性特征融合 被引量:4

Discriminative Feature Fusion Based on Extensions of PCA
原文传递
导出
摘要 提出两个判别性的特征融合方法——主成分判别性分析和核主成分判别性分析.基于主成份分析和最大间隔准则理论,构造一个多目标规划模型作为特征融合的目标.随后,该模型被转化成一个单目标规划问题并通过特征分解的方法求解.此外,将一个近似分块对角核矩阵K分成c(c为数据集中的类别数)个小矩阵,并求出它们的特征值和特征向量.在此基础上,通过向量代数处理得到一个映射矩阵α,当核矩阵K投影到α上,同类样本的相似信息能最大程度地得到保持.本文中的实验证实两种方法的有效性. Two methods for dimensionality reduction, principal component discriminative analysis and kernel principal component discriminative analysis, are proposed. Based on the theory of principal component analysis and maximum margin criterion, a multi-objective project model is constructed to formalize the goals for feature fusion. Then, it is transformed into a single-objective cost function for the projection, and the optimal linear mapping is obtained through optimizing this cost function. Additionally, the nearly diagonal block kernel matrix is divided into c kernel matrixes ( c is the number of classes in dataset), and eigen-decomposition method is used to solve their d principal vectors. Through the process of vector algebra, a combined mapping α is obtained. When the original kernel matrix K is projected on α, the inner-class information is optimally preserved. The experimental results show their validity.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期305-312,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60774096)
关键词 主成份分析 最大间隔准则 支持向量机 分块对角阵 文本可视化 Principal Component Analysis, Maximum Margin Criterion, Support Vector Machine,Diagonal Block Matrix, Text Visualization
  • 相关文献

参考文献12

  • 1Hughes N P,Tarassenko L. Novel Signal Shape Descriptors through Wavelet Transforms and Dimensionality Reduction[J].Proceedings of Spie,2003.763-773.
  • 2王珏;周志华;周傲英.机器学习及其应用[M]北京:清华大学出版社,2006.
  • 3Li Haifeng,Jiang Tao,Zhang Keshu. Efficient and Robust Feature Fusion by Maximum Margin Criterion[J].IEEE Transactions on Neural Networks,2006,(01):157-165.
  • 4Li Bo,Zheng Chunhou,Huang Deshuang. Locally Linear Discriminant Embedding:An Efficient Method for Face Recognition[J].Pattern Recognition,2008,(12):3813-3821.
  • 5Roweis S T. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,(5500):2323-2326.doi:10.1126/science.290.5500.2323.
  • 6Shawe-Taylor J,Cristianini N. Kernel Methods for Pattern Analysis[M].Cambridge:Cambridge University Press,2004.
  • 7Chatfield C,Collins A J. Introduction to Multivariate Analysis[M].London:Chapman and Hall,1980.
  • 8Zhang Huaping,Yu Hongkui,Xiong Deyi. HHMM-Based Chinese Lexical Analyzer ICTCLAS[A].Sapporo,Japan,2003.184-187.
  • 9Salton G,McGill M J. Introduction to Modem Information Retrieval[M].New York,USA:McGraw-Hill,1986.
  • 10王庆刚,李见为.具有局部结构保留性质的PCA改进算法[J].模式识别与人工智能,2009,22(3):388-392. 被引量:4

二级参考文献21

共引文献27

同被引文献39

  • 1邓波,张玉超,金松昌,林旺群.基于MapReduce并行架构的大数据社会网络社团挖掘方法[J].计算机研究与发展,2013,50(S2):187-195. 被引量:10
  • 2He Xiaofei,Niyogi P.Locality Preserving Projections[C]// Thrun S,Saul L K,Sch'olkopf B.Advances in Neural Information Processing Systems.Vancouver,Canada:[s.n.],2003:327-334.
  • 3He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face Recognition Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (3):328-340.
  • 4Roweis S T,Sail L K.Nonlinear Dimensionality by Locally Linear Embedding[J].Science,2000,290 (5500):2323-2326.
  • 5Saul L K,Roweis S T.Think Globally,Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J].Journal of Machine Learning Research,2003,4 (1):119-155.
  • 6Wright J,Allen Y,Ganesh A,et al.Roust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (2):210-227.
  • 7Qiao Lishan,Chen Songcan,Tan Xiaoyang.Sparsity Preserving Discriminant Analysis for Single Training Image Face Recognition[J].Pattern Recognition Letters,2010,31 (5):422-429.
  • 8Cheng Bin,Yang Jianchao,Fu Yun,et al.Learning with 11-graph for Image Analysis[J].IEEE Transactions on Image Processing,2010,19 (4):858-866.
  • 9Yan Shuicheng,Wang Huan.Semi-supervised Learning by Sparse Representation[C]//Proceedings of the SIAM International Conference on Data Mining.Nevada,USA:[s.n.],2009:792-801.
  • 10Cai Deng,He Xiaofeng,Han Jiawei.Semi-supervised Discriminant Analysis[C]//Proceedings of the 11th IEEE International Conference on Computer Vision.Rio de Janeiro,Brazil:IEEE Press,2007:1-7.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部