期刊文献+

基于马氏距离度量的局部线性嵌入算法 被引量:4

Mahalanobis Distance Measurement Based Locally Linear Embedding Algorithm
原文传递
导出
摘要 局部线性嵌入算法(LLE)中常用欧氏距离度量样本间相似度.而对于图像等高维数据,欧氏距离不能准确体现样本间的相似程度.文中提出基于马氏距离度量的局部线性嵌入算法(MLLE).算法首先从现有样本中学习到一个马氏度量,然后在LLE算法的近邻选择、现有样本及新样本降维过程中用马氏度量作为相似性度量.将MLLE算法及其它典型的流形学习算法在ORL和USPS数据库上进行对比实验,结果表明MLLE算法具有良好的识别性能. Euclidean distance is normally used to measure the similarity between samples in locally linear embedding algorithm (LLE). But for some high dimensional data, such as images, Euclidean distance can not accurately reflect the similarity between samples. A Mahalanobis distance metric based locally linear embedding algorithm (MLLE) is proposed. Firstly, MLLE ascertains a Mahalanobis metric from the existing samples. Then, the Mahalanobis metric is used to choose neighborhoods and to reduce the dimensionality of the existing samples and the new samples. The comparison result of MLLE algorithm and some classical manifold based algorithms on ORL and USPS databases proves that MLLE algorithm is effective in recognizing images.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期318-324,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60873038)
关键词 局部线性嵌入 流形学习 降维 图像识别 Locally Linear Embedding, Manifold Learning, Dimensionality Reduction, ImageRecognition
  • 相关文献

参考文献27

  • 1Turk M,Pentland A. Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,(01):71-86.doi:10.1162/jocn.1991.3.1.71.
  • 2Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs.Fisherfaces-Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.doi:10.1109/34.598228.
  • 3Hyvarinen A. Survey on Independent Component Analysis[J].Neural Computing Surveys,1999,(01):94-128.
  • 4Tenenbaum J B,de Silva V,Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,(5500):2319-2323.doi:10.1126/science.290.5500.2319.
  • 5Roweis S T,Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,(5500):2323-2326.doi:10.1126/science.290.5500.2323.
  • 6Belkin M,Niyogi P. Laplacian Eigenmaps for Dimension Reduction and Data Representation[J].Neural Computation,2001,(06):1373-1396.
  • 7Zhang Zhenyue,Zha Hongyuan. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,(04):406-424.
  • 8Donoho D L,Grimes C. Hessian Eigenmaps:New Locally Linear Embedding Techniques for High-Dimensional Data[J].Proc of the National Academy of Arts and Sciences,2003,(10):5591-5596.
  • 9Wang Liwei,Zhang Yan,Feng Jufu. On the Euclidean Distance of Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(08):1334-1339.
  • 10Zhang Lijing;Wang Ning.Locally Linear Embedding Based on Image Euclidean Distance[A]山东济南,20071914-1918.

同被引文献12

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部