摘要
针对一类分数阶(超)混沌系统的异结构同步问题,根据分数阶动力系统稳定性理论,结合反馈控制和主动控制方法提出了一种新的分数阶(超)混沌系统异结构同步方法。方法不仅不需要计算复杂的条件Lyapunov指数,而且保留了响应系统的非线性项。在数值研究过程中,可直接用时域进行数值计算,而不必进行时域与复频域转换。仿真结果表明:所设计的控制策略简单、易于实现,而且没有强加在系统上的限制条件,因此应用范围较宽。理论分析及仿真结果证明该方法的有效性。
Based on stability theory of fractional-order systems,feedback control and active control strategy,a new method was proposed for synchronizing and controlling different fractional chaotic(hyperchaotic) systems.The method does not require the computation of the conditional Lyapunov exponents.Moreover it retains nonlinear terms of the response system.In the numerical research process,it can be calculated directly in the time domain,and need not conversion from time domain to frequency domain.There is no restrictive assumption imposed on the system,so the controller is simple and easy to implement.It broadens the range of applicability.Theoretical analysis and simulation results demonstrate the effectiveness of the proposed synchronization method.
出处
《计算机仿真》
CSCD
北大核心
2012年第4期193-195,211,共4页
Computer Simulation
关键词
分数阶
混沌系统
混沌同步
非线性项
Fractional-order
Chaotic system
Chaotic synchronization
Nonlinear terms