期刊文献+

一类积分边界条件下奇异分数微分方程边值问题正解的存在性

Existence of positive solution for a class singular of nonlinear fractional differential equations
下载PDF
导出
摘要 考虑(n-1,1)型积分边界条件下奇异非线性分数微分方程边值问题.运用半序集上的不动点定理研究其正解的存在性和唯一性. In this paper,by utilizing a result from the fixed point theorem in partially ordered sets,the existence and uniqueness of positive solution for the boundary value problem of(n-1,1)-type nonlinear fractional differential equations with integral boundary condition are given.
作者 王璐
出处 《徐州师范大学学报(自然科学版)》 CAS 2012年第1期18-23,共6页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11171286)
关键词 分数微分方程 边值问题 正解 fractional differential equation boundary value problem positive solution
  • 相关文献

参考文献15

  • 1Bai Zhanbing,Lü Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,2005,(02):495.doi:10.1016/j.jmaa.2005.02.052.
  • 2郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10. 被引量:49
  • 3Benchohra M,Henderson J,Ntouyas S K. Existence results for fractional order functional differential equations with infinite delay[J].Journal of Mathematical Analysis and Applications,2008,(02):1340.
  • 4Delbosco D,Rodino L. Existence and uniqueness of a nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,1996,(02):609.doi:10.1006/jmaa.1996.0456.
  • 5Kumar P,Agrawal O P. An approximate method for numerical solution of fractional differential equations[J].Signal Processing,2006,(10):2602.doi:10.1007/s00401-011-0864-5.
  • 6Li C F,Luo X N,Zhou Yong. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J].Computers and Mathematics with Applications,2010,(03):1363.doi:10.1016/j.camwa.2009.06.029.
  • 7Ling Yi,Ding Shusen. A class of analytic functions defined by fractional derivation[J].Journal of Mathematical Analysis and Applications,1994,(02):504.doi:10.1006/jmaa.1994.1313.
  • 8Zhao Yige,Sun Shurong,Han Zhenlai. The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations[J].Commun Nonlinear Sci Numer Simulat,2011,(04):2086.doi:10.1016/j.cnsns.2010.08.017.
  • 9Zhang Shuqin. Existence of a solution for thc fractional differential equation with nonlinear boundary conditions[J].Computers and Mathematics with Applications,2011,(04):1202.doi:10.1016/j.camwa.2010.12.071.
  • 10Zhang Shuqin. The existence of a positive solution for a nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,2000,(02):804.doi:10.1006/jmaa.2000.7123.

二级参考文献56

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Miller K S,Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: John Wiley & Sons, 1993.
  • 3Podlubny I. Fractional differential equations[M]. San Diego:Acad Press,1999.
  • 4Samko S G,Kilbas A A,Maritchev O I. Integrals and derivatives of the fractional order and some of their applications[M]. Minsk: Naukai Tekhnika, 1987.
  • 5Benchohra M, Henderson J, Ntouyas S K,et al. Existence results for fractional order functional differential equations with infinite delay[J]. J Math Anal Appl,2008,338(2) :1340.
  • 6Oldham K B,Spanier J. The fractional calculus[M]. New York:Acad Press,1974.
  • 7Kiryakova V. Generalized fractional calculus and applications[G]//Pitman Research Notes in Math:301. Harlow: Longman, 1994.
  • 8Blair G W S. Some aspects of the search for invariants[J]. Br J for Philosophy of Sci,1950,1(3):230.
  • 9Blair G W S. The role of psychophysics in theology[J]. J of Colloid Sci,1947(2) -21.
  • 10Westerlund S. Dead matter has memory! [J]. Physica Scripta, 1991,43 : 174.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部