期刊文献+

一种新的模糊规则提取方法 被引量:4

A New Fuzzy Rule Extraction Method
下载PDF
导出
摘要 模糊规则是模糊系统的重要组成部分。针对数据库中的模糊规则提取问题,探讨了IF-THEN规则中的结论对前提的依赖关系,给出了规则的依赖度的定义,设计了基于遗传算法的模糊规则提取算法。实验验证了算法的有效性。 Fuzzy rule is an important part of fuzzy systems.For the problem of extracting fuzzy rules in the database,the dependence of the conclusion on the premise in the IF-THEN rules was discussed,the definition of the rules dependence was given and the fuzzy rule extraction method based on genetic algorithm was designed.Experiments verify the effectiveness of the proposed algorithm.
出处 《辽宁工业大学学报(自然科学版)》 2012年第1期22-26,共5页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 辽宁省普通高等学校优秀青年骨干教师基金项目(LS2010079)
关键词 模糊规则 规则提取 规则依赖度 遗传算法 模糊系统 fuzzy rule rule extraction dependence of rules genetic algorithm fuzzy system
  • 相关文献

参考文献7

  • 1王立新.模糊系统与模糊控制教程[M]北京:清华大学出版社,2003.
  • 2Wang L X,Mendel J M. Generating fuzzy rules by learning from examples[J].IEEE Transactions on Systems Man and Cybernetics,1992,(06):1414-1427.doi:10.1109/21.199466.
  • 3Ishibuchi H,Yarnamoto T. Rule weight specification in fuzzy rule-based classification systems[J].IEEE Transactions on Fuzzy Systems,2005,(04):428-435.doi:10.1109/TFUZZ.2004.841738.
  • 4Chakraborty D,Pal N R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy nde-based classification[J].IEEE Transactions on Neural Networks,2004,(01):110-123.
  • 5Ishibuchi H,Nakashirna T,Murata T. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,1999,(05):601-618.doi:10.1109/3477.790443.
  • 6王永富,王殿辉,柴天佑.一个具有完备性和鲁棒性的模糊规则提取算法[J].自动化学报,2010,36(9):1337-1342. 被引量:33
  • 7黄晓斌,万建伟,张燕.一种基于模糊规则的分类方法[J].计算机工程与科学,2004,26(3):57-60. 被引量:1

二级参考文献13

  • 1王永富,柴天佑.从数据中挖掘模糊规则及其系统实现[J].系统工程学报,2005,20(5):497-503. 被引量:8
  • 2李佳宁,易建强,赵冬斌,西广成.一种新的基于神经模糊推理网络的复杂系统模糊辨识方法[J].自动化学报,2006,32(5):695-703. 被引量:12
  • 3边肇祺.模式识别[M].清华大学出版社,1999..
  • 4Wang X Z. Fuzzy rules generations from data for process operational decision support. Computers and Chemical Engineering, 1997, 21(6): 661-666.
  • 5Guillaume S. Designing fuzzy inference systems from data: an interpreability oriented review. IEEE Transactions on Fuzzy Systems, 2001, 9(3): 426-443.
  • 6Wang L X, Mendel J M. Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(6): 1414-1427.
  • 7Wang L X. The WM method completed: a flexible fuzzy system approach to data mining. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 768-782.
  • 8Wang L X. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 146-155.
  • 9Su C Y, Stepanenko Y. Adaptive control of a class of non- linear systems with fuzzy logic. IEEE Transactions on Fuzzy Systems, 1994, 2(4): 285-294.
  • 10Wang Y F, Wang D H, Chai T Y. Modeling and control compensation of nonlinear friction using adaptive fuzzy systems. Mechanical Systems and Signal Processing, 2009, 23(8): 2445-2457.

共引文献32

同被引文献46

  • 1王永富,柴天佑.从数据中挖掘模糊规则及其系统实现[J].系统工程学报,2005,20(5):497-503. 被引量:8
  • 2Wang Lixin, Mendel J M. Generating Fuzzy Rules by Learning from Examples. IEEE Trans on Systems, Man and Cybernetics, 1992, 22(6) : 1414-1427.
  • 3Wang Lixin. The WM Method Completed: A Flexible Fuzzy System Approach to Data Mining. IEEE Trans on Fuzzy Systems, 2003, 11 ( 6 ) : 768-782.
  • 4Chen Chunhao, Hong T P, Tseng V S. Fuzzy Data Mining for Time Series Data. Applied Soft Computing, 2012, 12(1) : 536-542.
  • 5Yang Xueming, Yuan Jiangye, Yuan Jinsha, et al. An Improved WM Method Based on PSO for Electric Load Forecasting. Expert Systems with Applications, 2010, 37 (12) : 8036-8041.
  • 6Casillas J, Cordon O, Herrera F. Improving the Wang and Mendel's Fuzzy Rule Learning Method by Inducing Cooperation among Rules //Proc of the 8th Conference on Information Processing and Man- agement of Uncertainty in Knowledge-Based Systems. Madrid, Spain, 2000:1682-1688.
  • 7Chen Wenyu, Gou Jin. Improved Wang-Mendel Scheme Based on Cooperation among Input Variables. International Review on Com- puters and Software, 2012, 7(5) : 2685-2689.
  • 8Kohonen T. Physiological Interpretation of the Self-Organizing Map Algorithm. Neural Networks, 1993, 6(7) : 895-905.
  • 9Nasr M B, Chtourou M. A Self-Organizing Map-Based Initialization for Hybrid Training of Feed Forward Neural Networks. Applied Soft Computing, 2011, 11(8) : 4458-4464.
  • 10Kohonen T. Essentials of the Self-Organizing Map. Neural Net- works, 2013, 37(1): 52-65.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部