期刊文献+

复杂场景下的快速目标检测算法 被引量:16

Rapid target detection algorithm in complex scene
下载PDF
导出
摘要 针对场景发生改变的目标检测,提出了一种快速的目标检测算法。该算法将像素点划分为背景点和前景点两类,使用聚类的方法并采取像素级收敛条件分别建立背景和前景模型。背景模型的更新适用于全局发生缓慢的变化,稳定的前景模型向背景模型的转化对光照等其他场景突变具有很好的鲁棒性,使背景模型实时逼近真实背景,同时改进连通域扫描分割算法,提高目标分割速度。实验结果表明,该方法具有很好的鲁棒性,能够快速准确地检测出运动目标,为在DSP等嵌入式系统上实现实时目标检测提供了有利条件。 Aimed at the object detection in scene change a fast object detection method was proposed.The algorithm divided the pixels into background pixels and foreground pixels,the clustering method and the pixel-level convergence criteria was used to establish the background and foreground model.The background model was updated to suit for the global change.When the stable foreground model transformed to the background,it had a good robustness to the light and other scene mutation.The background model could be approximated to the real background,meanwhile,the connected domain scan segmentation algorithm was improved.The experiments demonstrate that this method have a good robustness,can rapidly and accurately detect the moving object.It provides favorable conditions for real-time target detection in the DSP and other embedded system.
出处 《电子测量与仪器学报》 CSCD 2012年第3期261-266,共6页 Journal of Electronic Measurement and Instrumentation
基金 安徽省信息产业厅信息产业发展基金项目(No.2008012) 特种显示技术教育部重点实验室开放课题基金项目(No.2008HGXJ0350)
关键词 复杂场景 目标检测 像素级收敛 光照突变 连通域扫描 complex scene target detection pixel-level convergence light mutation connected domain scan
  • 相关文献

参考文献9

  • 1BARRON J,FLEET D,BEACHEMIN S.Performanceof optical flow techniques[J].International Journal ofcomputer Vision,1994,12(1):42-47.
  • 2MEIER T,NGUN K N.Video segmentation for contentbased coding[J].IEEE Trans on Circuits and Systems forVideo Technology,1999,9(8):1 190-1 203.
  • 3TOOYAMA K,KRUMM J,BRUMIT B,et al.Principlesand practice of background maintenance[C].Proc ICCV,Corfu,Greece,1999:246-261.
  • 4GUPT S,MASOUND O,MARTIN R F K,et al.Detec-tion and classification for vechicles[J].IEEE Transla-tions on Intelligent Transportation Systems,2002,3(1):37-47.
  • 5PENG D ZH,LIN CH Y.Architecture design for alow-cost and low-complexity foreground object seg-mentation with Multi-model Background Maintenancealgorithm[C].Proceedings of IEEE International Con-ference on Image,2009:255-261.
  • 6STAUFFER C,GRIMSON W E L.Adaptive backgroundmixture models for real-time tracking[C].Proc of IEEEConference on Computer Vision and pattern Recognition,1999:246-252.
  • 7方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 8LI Q ZH,HE D X,WANG B.Effective moving objectsdetection based on clustering background model forvideo surveillance[C].Congress on Image and SignalProcessing,2008,3:656-660.
  • 9齐美彬,鲜柯,蒋建国,林芬华.一种基于车辆遮挡模型的车流量统计算法[J].仪器仪表学报,2010,31(6):1335-1341. 被引量:16

二级参考文献27

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2BAROTTI S,LOMBARDI L,LOMBARDI P.Multi-module switching and fusion for robust video surveillance[A].2003,Proceedings of the 12th International Conference on Image Analysis and Processing[C].Mantova,Italy,2003:260-265.
  • 3KIM J B,KIM H J.Efficient region-based motion segmentation for a video monitoring system[J].Pattern Recognition Letters,2003,24:113-128.
  • 4KIM K,CHALIDABHONGSE T H,HARWOOD D,et al.Real-time Foregronnd-background segmentation using codebookmodel[J].Real-Time Imaging,2005,11(3):172-185.
  • 5ZHOU SH H,CHELLAPPA R,MOGHADDAM B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004,13(11):1491-1506.
  • 6SONY X F,FNEVATIA R.A model-based vehicle segmentation method for tracking[A].ICCV 2005,Proceedings of the 10th IEEE International Conference on Computer Vision[C].Beijing,China,2005:1124-1131.
  • 7ADAM A,RIVLIN E,SHIMSHONI I.Robust fragments-based tracking using the integral histogram[A].CVPR2006,Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Washington,USA,2006,1:798-805.
  • 8LIU H,LATECKI L,LIU.W.A unified curvature definition for regular,polygonal,and digital planar curves[J].International Journal of Computer Vision,2008,80(1):104-124.
  • 9PEDRO F,JOSHUA D.Hierarchical matching of deformable shapes[A].CVPR 2007,Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Minneapolis,MN,2007:1-8.
  • 10GUPTES,MASOUDO,MARTIN R F K,et al.Detection and classification of vehicle[J].IEEE Transactions on Intelligent Transportation,2002,3(1):37-47.

共引文献54

同被引文献173

引证文献16

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部