期刊文献+

行阶梯观测矩阵、对偶仿射尺度内点重构算法下的语音压缩感知 被引量:22

Compressed Sensing of Speech Signal Based on Row Echelon Measurement Matrix and Dual Affine Scaling Interior Point Reconstruction Method
下载PDF
导出
摘要 基于语音信号在离散余弦域上的近似稀疏性,针对采用随机高斯观测矩阵及线性规划方法进行语音压缩感知与重构时,重构零(近似零)系数定位能力差而导致重构效果不好的缺点,本文提出一种新的行阶梯矩阵做观测矩阵,用对偶仿射尺度内点重构算法对语音进行压缩感知与重构,并对该算法下的重构性能进行理论分析.语音压缩感知仿真结果表明,在离散余弦基下,压缩比(观测序列与原始序列样值数之比)为1∶4时,行阶梯观测矩阵下的平均重构信噪比比随机高斯观测矩阵下提高9.73dB,平均MOS分比随机高斯观测矩阵下提高1.22分. Based on the approximate sparsity of speech signal in discrete cosine basis,this paper proposes a new algorithm of compressed sensing of speech signal based on special row echelon measurement matrix and dual affine scaling interior point reconstruction method.This algorithm can resolve the problem of inaccuracy of location of reconstruction coefficient which is zero or nearly zero of compressed sensing based on Gaussian measurement matrix and linear programming to some extent.The reconstruction performance of this algorithm is analyzed theoretically.The simulation results of compressed sensing of speech signal show when the reduction ratio(the ratio of numbers of measurements and original samples) is 1∶4 based on the discrete cosine basis,the average SNR of reconstruction signal based on the special row echelon measurement matrix is 9.73 dB higher than the Gaussian measurement matrix,and the average MOS score of reconstruction signal based on the special row echelon measurement matrix is 1.22 higher than the Gaussian measurement matrix.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第3期429-434,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60971129) 江苏省博士后科学基金(No.1101022B) 江苏省普通高校研究生科研创新计划(No.CX10B 189Z No.CX10B 191Z)
关键词 压缩感知 离散余弦基 观测矩阵 行阶梯矩阵 对偶仿射尺度内点法 compressed sensing discrete cosine basis measurement matrix row echelon matrix dual affine scaling interior point method
  • 相关文献

参考文献21

  • 1D Donoho.Compressed sensing[J].IEEE Trans on InformationTheory,2006,52(4):1289-1306.
  • 2E Candès.Compressive sampling[A].Proceedings of the Inter-national Congress of Mathematicians[C].Madrid,Spain:Euro-pean Mathematioal Society Publishing House,2006.1433-1452.
  • 3D L Donoho,Y Tsaig.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 4M Andrecut,R A Este,S A Kauffman.Competitive optimiza-tion of compressed sensing[J].Journal of Physics A:Mathe-matical and Theoretical,2007,40(16):299-305.
  • 5Giacobello D,Christensen M G,Murthi M N,Jensen S H,Moonen M.Retrieving sparse patterns using a compressedsensing framework:Applications to speech coding based onsparse linear prediction[J].Signal Processing Letters,IEEE,2010,17(1):103-106.
  • 6J F Gemmeke,B Cranen.Using sparse representations for miss-ing data imputation in noise robust speech recognition[A].Eu-ropean Signal Processing Conf,(EUSIPCO)[C].Lausanne,Switzerland:EUSIPCO,2008.987-991.
  • 7H Luo,G Pottie.Routing explicit side information for datacompression in wireless sensor networks[A].Int Conf on Dis-tirbuted Computing in Sensor Systems(DCOSS)[C].MarinaDel Rey,CA:V K Prasanna Kumar,2005.75-88.
  • 8D Takhar,J Lsaka,M Wakin.A new compressive imagingcamera architecture using optical domain compression[A].Pro-ceedings of SPIE[C].Bellingham WA:International Societyfor Optical Engineering,2006:6065.
  • 9MichaelLustig,DavidDonoho,John M Pauly.SparseMRI:Theapplication of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 10P Borgnat,P Flandrin.Time-frequency localization from spar-sity constraints[A].IEEE Int Conf on Acoustics,Speech,andSignal Processing(ICASSP)[C].Piscataway:Institute ofElectrical and Electronics Engineers Inc,2008.3785-3788.

二级参考文献118

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献762

同被引文献269

  • 1徐伟业,宋宇飞,宗慧.一种基于离散傅里叶变换的小波变换的快速算法[J].南京工程学院学报(自然科学版),2005,3(1):11-17. 被引量:5
  • 2ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4DONOHO D L. Compressed sensing [ J ]. IEEE Trans, onInformation Theory,2006,52(4) : 1289-1306.
  • 5CANDfiS E J. Compressive sampling [ C ]. InternationalCongress of Mathematicians,European Mathematical So-ciety Publishing House, Madrid, Spain ,2006 : 1433-1452.
  • 6CHEN W, WASSELL I J. Energy-efficient signal acquisitionin wireless sensor networks: A compressive sensing frame-work[J]. IET Wireless Sensor Systems,2012,2(1) :1-8.
  • 7FANG L,LI S T,NIE Q. Sparsity based denoising of spec-tral domain optical coherence tomography images [ J ].Biomedical Optics Express,2012,3(5) :927-942.
  • 8SUN X L,YU AN X,D0NG ZH’et al. Three-dimensionalSAR focusing via compressive sensing ; The case study ofangel stadium[ J ] . IEEE Geoscience and Remote SensingLetters,2012,9(4) :759-763.
  • 9CANDES E J, ROMBERG J,TA0 T. Robust uncertaintyprinciples: Exact signal reconstruction from highly incom-plete frequency information[ J]. IEEE Trans, on Informa-tion Theory,2006,52 (2) :489-509.
  • 10RONALD A, DEVORE. Deterministic constructions ofcompressed sensing matrices [ J ]. Journal of Complexity,2007,23(4) :918-925.

引证文献22

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部