期刊文献+

基于小波变换和矩阵束算法的同步电机参数辨识 被引量:20

Parameter identification of synchronous machine based on wavelet transform and matrix pencil algorithm
下载PDF
导出
摘要 为了精确检测同步电机参数,提出了一种小波变换和矩阵束相结合的新算法。该方法运用小波变换对短路电流进行消噪处理,提高其信噪比。运用矩阵束算法提取预处理后的短路电流各分量的频率和阻尼,然后对短路电流各分量的幅值和相位使用最小二乘法进行估计,进而实现同电机参数的辨识。针对在不同信噪比下的短路电流采样数据,分别运用TLS-ESPRIT算法和该方法进行同步电机参数辨识,仿真结果表明,与TLS-ESPRIT算法相比,该方法采用的数据样本数较少。在信噪比大于30dB时,该方法具有更高的计算精度;在信噪比低于30dB时(15~25dB),仍能精确地辨识同步电机的参数。该算法的计算精度高,抗噪性强,简单有效。 In order to accurately detect synchronous machine parameters, this paper presents a new algorithm based on the wavelet transform and the matrix pencil. This method pretreats the short-circuit current by noise with the wavelet transform to improve its SNR. Then matrix pencil algorithm is used to extract the frequency and damping of each component of short-circuit current. The magnitude and phase of each component of short-circuit current are estimated by least squares method, thus obtaining the synchronous parameters. Under different signal to noise ratio, it respectively uses TLS-ESPRIT algorithm and the method for parameter identification of synchronous machine. Simulation results show that comparing with the TLS-ESPRIT algorithm, it uses less samples. When SNR is larger than 30 dB, this method has higher recognition accuracy; and when SNR is between 15dB and 25dB, it still accurately identifies the parameters. The method developed in this paper is valid.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第9期87-92,共6页 Power System Protection and Control
关键词 同步电机 参数辨识 小波预处理 矩阵束算法 最小二乘 synchronous machine parameter identification wavelet preprocessing matrix pencil algorithm least squares
  • 相关文献

参考文献13

二级参考文献175

共引文献259

同被引文献202

引证文献20

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部