期刊文献+

SPCA参数对单样本人脸识别效果影响分析 被引量:2

Analysis of the influence of SPCA parameters on the recognition of a single sample face
下载PDF
导出
摘要 奇异值扰动的主分量分析(SPCA)是一种有效的单样本人脸识别方法,但SPCA算法的识别效果受参数选择的影响比较大,针对SPCA算法中衍生图像生成参数n和结合参数α的不同取值对识别效果的影响进行了分析,利用ORL人脸库和CAS-PEAL人脸库做了大量的实验和比较分析,实验结果表明给出的SPCA参数选取方法和取值范围是合理的,并有效地提高了SPCA算法的实际应用效果和单样本人脸识别的性能. Singular value decomposition perturbation principal component analysis(SPCA) is an effective single-sample face recognition method;however,the identification results of the SPCA algorithm are seriously affected by parameter selection.In this paper,the effect on the identification,which was caused by the derived image parameter and the combined image generation parameter in the SPCA algorithm,was analyzed.Many experiments and comparative analyses were performed on the basis of the ORL face database and the CAS-PEAL face database.The experimental results show that the SPCA parameter selection method and the parameter range given in this paper are reasonable.In addition,reasonable parameters are effective in improving practical application of SPCA algorithms and the recognition performance of a single-sample face.
出处 《智能系统学报》 2011年第6期531-538,共8页 CAAI Transactions on Intelligent Systems
基金 国家"863"计划资助项目(2008AA01Z148) 黑龙江省杰出青年科学基金资助项目(JC200703) 哈尔滨市科技创新人才研究专项基金资助项目(2007RFXXG009)
关键词 人脸识别 奇异值分解 结合投影主分量分析 奇异值扰动主分量分析 衍生图像 结合图像 face recognition singular value decomposition (PC)2A SPCA derived image combined image
  • 相关文献

参考文献2

二级参考文献14

共引文献27

同被引文献15

  • 1Wu J X,Zhang D Q. Face Recognition With one Training Im-age Per Person [ J]. Pattern Recognition Letters, 2002? 23?14):1711-1719.
  • 2Chen S C, Zhang D Q. Enhanced (PC)2A for Face Recogni-tion with one Training Image Per Person[J]. Pattern Recog-nition Letters,2004,25(10) : 1173-1181.
  • 3Zhang D Q,Chen S C,Zhou Z H. A New Face RecognitionMethod Based on SVD Perturbation for Single Example Im-age Per Person[J]. Applied Mathematics and Computation,2005,163(2) :895-907.
  • 4Scholkopf B. Nonlinear Component Analysis as a Kernel Ei-genvalue Problem [J]. Neural Computer, 1998,10: 1299-1319.
  • 5Zheng Y. Advanced Discrete Wavelet Transform Fusion Al-gorithm and Its Optimization by Using the Metric of ImageQuality Index [J]. Optical Engineering, 2005,44 ( 3 ): 452-459.
  • 6He Yu-qing, Feng Guang-qin, He Huan. Near Infrared FaceRecognition Based on Wavelet Transform and 2DPCA[C]//Proc of 2010 IEEE International Conference on IntelligentComputing and Integrated Systems (ICISS 2010), 2010:359-362.
  • 7Hu Hai-feng. Variable Lighting Face Recognition Using Dis-crete Wavelet Transform [J]. Pattern Recognition Letters,2011,32(13):1526~1534.
  • 8祝海江,李仕刚.基于2D模板与3D包围式标定块的鱼眼相机标定[J].仪器仪表学报,2008,29(7):1512-1516. 被引量:7
  • 9王科俊,段胜利,冯伟兴.单训练样本人脸识别技术综述[J].模式识别与人工智能,2008,21(5):635-642. 被引量:23
  • 10史卫亚,郭跃飞,薛向阳.一种解决大规模数据集问题的核主成分分析算法[J].软件学报,2009,20(8):2153-2159. 被引量:21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部