摘要
The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg-Barnett formalism.Then,two nonclassical features,i.e.,squeezing in the number and phase operators,as well as the number-phase Wigner function of the generalized squeezed states are investigated.Due to some actual physical situations,the present approach is applied to two classes of generalized squeezed states:solvable quantum systems with discrete spectra and nonlinear squeezed states with particular nonlinear functions.Finally,the time evolution of the nonclassical properties of the considered systems has been numerically investigated.
The quantum phase properties of the generalized squeezed vacuum states associated with solvable quantum systems are studied by using the Pegg-Barnett formalism.Then,two nonclassical features,i.e.,squeezing in the number and phase operators,as well as the number-phase Wigner function of the generalized squeezed states are investigated.Due to some actual physical situations,the present approach is applied to two classes of generalized squeezed states:solvable quantum systems with discrete spectra and nonlinear squeezed states with particular nonlinear functions.Finally,the time evolution of the nonclassical properties of the considered systems has been numerically investigated.