期刊文献+

基于核自适应的近邻传播聚类算法 被引量:9

Kernel-based adaptation for affinity propagation clustering algorithm
下载PDF
导出
摘要 近邻传播聚类(AP)方法是近年来出现的一种广受关注的聚类方法,在处理多类、大规模数据集时,能够在较短的时间得到较理想的结果,因此与传统方法相比具有很大的优势。但是对于一些聚类结构复杂的数据集,往往不能得到很好的聚类结果。通过分析数据的聚类特性,设计了一种可以根据数据结构自动调整参数的核函数,数据集在其映射得到的核空间中线性可分或几乎线性可分,对该核空间中的数据集进行近邻传播聚类,有效提高了AP聚类的精确度和速度。算法有效性分析以及仿真实验验证了所提算法在处理大规模复杂结构数据集上的性能优于原始AP算法。 AP algorithm has become increasingly popular in recent years as an efficient and fast clustering algorithm.AP has better performance on large and multi-class dataset than the existing clustering algorithms.But for the datasets with complex cluster structures,it cannot produce good clustering results.Through analyzing the property of data clusters,this paper proposed a kernel function,optimized that the parameters automatically according to the dataset structure,and the dataset in kernel space were linearly separable or almost linearly.Carried AP on the kernel space,it had a kernel-adaptive affinity propagation clustering algorithm(KA-APC).Compared with the original AP clustering,it had the advantages of effectively dealing with the large multi-scale dataset.The promising experimental results show that this algorithm outperforms the original AP algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1644-1647,1650,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2009AA01A346)
关键词 近邻传播聚类 核聚类 核自适应聚类 流形学习 affinity propagation(AP) kernel clustering kernel adaptive clustering manifold learning
  • 相关文献

参考文献10

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1076
  • 2GELBARD R,GOLDMAN O,SPIEGLER I.Investigating diversity of clustering methods:an empirical comparison[J].Data&Knowledge Engineering,2007,63(1):155-166.
  • 3FREY B J,DUECK D.Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.
  • 4KANG J H,LERMAN K,PLANGPRASOPCHOK A.Analyzing mi-croblogs with affinity propagation[C]//Proc of the1st Workshop on Social Media Analytics.New York:ACM Press,2010:67-70.
  • 5CHEN Yang,LORENZO B,SUN Feng-yue,et al.A fuzzy statistics based affinity propagation technique for clustering in multispectral im-ages[J].IEEE Trans on Geosciences and Remote Sensing,2010,48(6):2647-2659.
  • 6GIVONI E,FREY B J.A binary variable model for affinity propaga-tion[J].Neural Computation,2009,21(6):1589-1600.
  • 7崔鹏,张汝波.基于核自调整进行半监督聚类[J].计算机应用研究,2009,26(5):1719-1722. 被引量:2
  • 8董俊,王锁萍,熊范纶.可变相似性度量的近邻传播聚类[J].电子与信息学报,2010,32(3):509-514. 被引量:49
  • 9BRRAND M.Charting a manifold[M]//Advances in Neural Informa-tion Processing Systems.Cambridge,MA:MIT Press,2003.
  • 10NG A Y,JORDAN M I,WEISS Y.On spectral clustering:analysis and an algorithm[M]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:856-864.

二级参考文献24

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2DHILLON I, GUAN Yu-qiang, KULIS B, et al, Kernel K-means: spectral clustering and normalized cuts[ C]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2004:345- 347.
  • 3BASU S, BILENKO M, MOONEY R, et al. A probabilisfic framework for semi-supervised clustering [ C ]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press. 2004 : 1248-1252.
  • 4CRISTIANINI N, SHAWE-TAYLOR J, ELISSEEFF A, et al. On kernel-target alignment[ J ]. Neural Information Processing Systems ,2001,36 (9) : 103-110.
  • 5CHAPELLE O, VAPNIK V. Choosing mutiple parameters for support vector machines [ J ]. Machine Learning, 2002,46 ( 1- 3 ) : 131- 159.
  • 6WANG Wen-jian, XU Z, LU W, et al.Determination of the spread parameter in the gaussian kernel for classification and regression [ J ]. Neuro Computing, 2002, 55 (3) : 645-650.
  • 7HUANG Jian, YUEN P C, CHEN Wen-sheng, et al. kernel subspace LDA with optimized Kernel parameters on face recognition [ C]//Proc of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. 2004 : 2115- 2118.
  • 8NATESH S, WU Qiang, LIANG Feng. Characterizing the function space for Bayesian kernel models [ J ]. Machine Learning Research, 2007,46 ( 8 ) : 1770-1778.
  • 9LOWED G. Similarity metric learning for a variable-kernel classifier [ J]. Neural Computation, 1995,7( 1 ) :72-85.
  • 10BASU S, BANERJEE A, MOONEY R. Semi-supervised clustering by seeding[ C]//Proc of the 19th International Conference on Machine Learning. San Francisco:Morgan Kanfmann Publishers, 2002:19-26.

共引文献1119

同被引文献55

引证文献9

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部