期刊文献+

引入欧椋鸟群飞行机制的改进粒子群算法 被引量:6

Improved particle swarm algorithm introducing flight mechanism of flock of European starlings
下载PDF
导出
摘要 传统粒子群算法存在早熟、精度低等不足,许多改进算法尽管性能略有提高,但依然存在原有弊端。生物学家对欧椋鸟群的最新研究发现:鸟群飞行机制中个体间存在拓扑相互作用,与距离远近无关。受这一研究成果启发,提出一种引入欧椋鸟飞行机制的改进粒子群算法。该算法在进化策略上引入拓扑作用和猎食动物的惊扰机制,在参数选择上提出粒子群动能的概念,在线性递减权重框架下通过粒子动能自适应更新惯性权重,拓扑作用集合采用最近邻粒子构成,将拓扑因子与惯性权重相联系,达到进化状态的平衡和自适应性。仿真实验表明,改进算法在精度、成功率和效率上具有一定的优势,尤其是对多模态优化问题。 The main defects of conventional particle swarm algorithms are premature and low precision.Many improved algorithms promoted the performance of algorithm slightly while the defects aforementioned remained in a sense.In recent research on the flock of European starlings,biologists reveal that the flying mechanism of the flock lies on a topological interaction among members,not the distance between them.Enlightened by this new discovery,this paper proposed an improved algorithm by introducing two strategies of the flock of starlings flight mechanism: the topological interaction and the disturbance of predator.With respect to the selection of parameters,it put forward a new concept of particle's kinetic energy to adjust the inertia factor adaptively in the frame of linear decreased weights.The topological interaction set consists of the near neighbors in the flock.It set the factors of inertia weight and topological interactions to affect each other.This made the evolution state more harmonic and adaptive.The numerical experiments indicate that the improved PSO algorithm surpasses the conventional ones on aspects of the optimization accuracy,success rates and overcoming the premature problem in a sense,especially in the case of multi-modal scenarios.
出处 《计算机应用研究》 CSCD 北大核心 2012年第5期1666-1669,1697,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60736007) 长安大学中央高校专项科研基金资助项目(CHD2010JC133)
关键词 粒子群算法 Kennedy-Eberhart模型 惯性权重 拓扑作用 多模态问题 particle swarm algorithm(PSO) Kennedy-Eberhart model inertia weights topological interaction multi-modal problem
  • 相关文献

参考文献11

  • 1KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.Perth,WA:IEEE Press,1995:1942-1948.
  • 2EBERHART R C,KENNEDY J.A new optimizer using particleswarm theory[C]//Proc of the 6th International Symposium on MicroMachine and Human Science.Nagoya:IEEE Press,1995:39-43.
  • 3SHI Yu-hui,EBERHART R C.A modified particle swarm optimizer[C]//Proc of IEEE World Congress on Computational Intelligence.Anchorage,AK:IEEE Press,1998:69-73.
  • 4CLERC M.The swarm and the queen:towards a deterministic andadaptive particle swarm optimization[C]//Proc of Congress of Evolu-tionary Computation.Piscataway,NJ:IEEE Press,1999:1951-1957.
  • 5许世明,张强.基于遗传粒子群算法的DNA编码优化[J].计算机工程,2008,34(1):218-220. 被引量:7
  • 6高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160
  • 7张春燕,须文波,孙俊,管芳景.MQPSO:一种具有多群体与多阶段的QPSO算法[J].计算机应用研究,2007,24(3):100-102. 被引量:8
  • 8ANDREA C,ALESSIO C,IRENE G,et al.Scale-free correlations instarling flocks[EB/OL].(2010-06-29)[2011-09-01].http://www.pnas.org/content/107/26/11865.full.pdf.
  • 9SUMPTER D J T.The principles of collective animal behavior[J].Philos Trans R Soc Lond B Biol Science,2006,361(1465):5-22.
  • 10BALLERINI M,CABIBBO N,CANDELIER R,et al.Interaction rulinganimal collective behavior depends on topological rather than metricdistance:evidence from a field study[J].The National Academyof Sciences of the USA,2008,105(4):1232-1237.

二级参考文献21

  • 1SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior: proceedings of the Congress on Evolutionary Computation[ C]. [ S. 1. ] :[ s. n. ] ,2004:325-331.
  • 2BUTHAINAH A K, CHILUKURIK M. Multi-phase generalization of the particle swarm optimization algorithm : IEEE [ C ]. [ S. l. ] : [ s.n. ] ,2002:489-494.
  • 3SHI Y, EBERHART R C. A modified particle swarm : proc. the IEEE International Conference on Evolutionary Computation [ C ]. [ S. 1. ] :[ s. n. ] , 1998 : 1945-1950.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization:proceedings of the IEEE International Joint Conference on Neural Net-works[ C]. [ S. 1. ] : [ s. n. ], 1995:1942-1948.
  • 5CLERC M, KENNEDY J. The particle swarm explosion stability and convergence in a multi dimensional complex space[ J ]. IEEE Transactions on Evolutionary Computation,2002,6( 1 ) :58-73.
  • 6KENNEDY J, EBERHART R C, SHI Y. Swarm intelligence [ M ].[ S. 1. ] : Morgan Kaufmanu, 2002.
  • 7SUN J, XU W B. A global search strategy of quantum-behaved particle swarm optimization : proceedings of the IEEE conference on Cybernetics and Intelligent Systems [ C ]. [ S. 1. ] : [ s. n. ],2004 : 111-116.
  • 8Garzon M,Neathery P,Deaton R J,et al.A New Metric for DNA Computing[C]//Proceedings of the 2nd Annual Gentic Programming Conference.USA:Stanford University,1997.
  • 9Marathe A,Condon A E,Corn R M.On Combinatorial DNA Word Design[C]//Proceedings of the 5th DIMACS Workshop on DNA-based Computers.Cambridge,MA,USA:DIMACS Press,1999.
  • 10Frutos A G.Demonstration of a Word Design Strategy for DNA Computing on Surfaces[J].Nucleic Acids Res.,1997,25(23):4748-4757.

共引文献172

同被引文献50

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部