期刊文献+

基于图的特征选择算法 被引量:3

Feature Selection Algorithm Based on Graph
下载PDF
导出
摘要 针对数据挖掘与模式识别领域中的高维数据处理问题,通过分析样本类间距离与类内距离,给出一种基于图理论的特征排序框架。根据该框架,提出使用类内-类间和K近邻相似度定义的2种快速特征选择算法,能避免复杂度较高的广义特征分解过程。实验结果表明,该算法具有较高的分类精度。 The high dimensionality of the data samples often makes the data mining or pattern recognition tasks intractable, through analyzing both the within-class distance and between-class distance, it presents a fast feature ranking framework, from which the computationally expensive feature decomposition is avoided. Two similarity measures of within-class and between-class similarity and K nearest neighbor similarity are employed to derive efficient feature selection algorithms. Experimental results demonstrate that these algorithms have higher classification precision.
出处 《计算机工程》 CAS CSCD 2012年第9期197-198,201,共3页 Computer Engineering
基金 国家自然科学基金资助项目(71001072) 广东省自然科学基金资助项目(9451806001002694)
关键词 数据挖掘 模式识别 特征选择 图模型 特征分解 K近邻 data mining pattern recognition feature selection graph model feature decomposition K nearest neighbor
  • 相关文献

参考文献6

  • 1杨安平,陈松乔,胡鹏.基于图嵌入正则化的人脸线性判别分析[J].计算机工程,2011,37(12):164-165. 被引量:2
  • 2He Xiaofei,Cai Deng,Partha N.Laplacian Score for FeatureSelection[C]//Proc.of Advances in Neural Information ProcessingSystems.[S.l.]:MIT Press,2006:507-514.
  • 3Zhang Wei,Xue Xiangyang,Lu Hong.Discriminant Neigh-borhood Embedding for Classification[J].Pattern Recognition,2006,39(11):2240-2243.
  • 4Robnik-Sikonja M,Kononenko I.Theoretical and EmpiricalAnalysis of ReliefF and RReliefF[J].Machine Learning,2003,53(1):23-69.
  • 5Yu Lei,Liu Huan.Efficient Feature Selection via Analysis ofRelevance and Redundancy[J].Journal of Machine LearningResearch,2004,5(12):1205-1224.
  • 6Peng Hanchuan,Long Fuhui,Ding C.Feature Selection Based onMutual Information:Criteria of Max-dependency,Max-relevance,and Min-redundancy[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(8):1226-1238.

二级参考文献7

  • 1Li S Z, Jain K. Handbook of Face Recognition[M]. New York, USA: Springer, 2005.
  • 2He Xiaofei, Yan Shuicheng, Hu Yuxiao. Face Recognition Using Laplacianfaces[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2005, 27(3):328-340.
  • 3Lu Juwei, Plataniotis K N, Venetsanopoulos A N. Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition[J]. Pattern Recognition Letters, 2003, 26(2): 181-191.
  • 4Neumaier A. Solving Ill-conditioned and Singular Linear Systems: A Tutorial on Regularization[J].SIAM Review.1998, 40(3):636-666.
  • 5Paige C C, Saunders M A. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares Problems[J].ACM Trans. on Mathematical Software.1982, 8(1):43-71.
  • 6李政仪,朱益丹,赵龙.基于有监督直接局部保持投影的人脸识别[J].计算机工程,2009,35(10):190-192. 被引量:7
  • 7杨利平,龚卫国,辜小花,李伟红,杜兴.完备鉴别保局投影人脸识别算法[J].软件学报,2010,21(6):1277-1286. 被引量:34

共引文献1

同被引文献39

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 3Kim Y, Street W N, Menczer F. Data Mining[M]. [S. 1.]: IGI Publishing, 2003.
  • 4Kotsiantis S. Feature Selection for Machine Learning Classification Problems: A Recent Overview[EB/OL]. (2010-11-21). http://libra.msra.cn/Publication/48456115/ feature-selection-for-machine-learning-classification-probl ems-a-recent-overview.
  • 5Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
  • 6Cohen S, Dror G, Ruppin E. Feature Selection viaCoalitional Game Theory[J]. Neural Computation, 2007, 19(7): 1939-1961.
  • 7Sun Xin, Liu Yanheng, Li Jin, et al. Feature Evaluation and Selection with Cooperative Game Theory[J]. Pattern Recognition, 2012, 45(8): 2992-3002.
  • 8Friedman J W. Game Theory with Applications to Economics[M]. 2nd ed. New York, USA: Oxford University Press, 1990.
  • 9Shapley L S. A Value for N-person Games[EB/OL]. (2008- 11-21). http://libra.msra.cn/Publication/1272349/a-value- for-n-person-games.
  • 10Cover T M, Thomas J A. Elements of Information Theory[M]. 2nd ed. Hoboken, USA: John Wiley & Sons, 2005.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部