摘要
为了在较弱的条件下研究一类具有内激波层现象的二次Dirichlet问题.用合成展开法构造出该问题的一阶渐近表达式,并利用不动点定理证明了解的存在性及其当ε→0时的渐近性质。在一定程度上,它比起传统的微分不等式方法放宽了对所提问题的条件限制。
In order to study quadratic Dirichlet problem with interior shock layer phenomena under relatively weak conditions,this paper constructed a first order formal approximation of the problem using the composite expansions.And then the existence and asymptotic behavior as ε→0 of solutions are proved by virtue of the fixed point theorem.Compared to the traditional way of applying Differential Inequality,to some extent,it relaxes restrictions on conditions regarding the questions proposed.
出处
《安徽理工大学学报(自然科学版)》
CAS
2012年第1期22-25,共4页
Journal of Anhui University of Science and Technology:Natural Science
基金
教育部科学技术研究重点资助项目(207047)
关键词
激波层
二次Dirichlet
合成展开法
不动点定理
Shock layer
quadratic Dirichlet problem
methed of composite expansions
fixed point theorem