期刊文献+

基于小波分解的语音自适应压缩感知 被引量:3

Adaptive Speech Compressed Sensing Based on Wavelet Transform
下载PDF
导出
摘要 根据语音信号经过小波分解后低频分量和高频分量的特点,提出分别对他们进行自适应压缩感知。首先对信号的低频分量用训练的过完备基进行稀疏分解,降低了稀疏分解过程中的计算量。然后详细描述了改进自适应观测矩阵的产生,以及对低频和高频分量分别进行自适应观测。最后通过OMP重构算法分别对低频和高频分量进行重构,通过小波合成还原出原始信号。实验表明,语音信号在基于小波分解的自适应压缩感知方案中具有良好的重构性能。 Based on the characteristics coefficients of speech signal at low frequency and high frequency after wavelet transformation,this paper proposes adaptive speech compressed sensing.First,the trained overcomplete dictionary is applied to the low frequency coefficients after wavelet transformation to decrease the computation of the sparse decomposition.Second,an improved adaptive sensing matrix is proposed,which is applied to the low frequency and high frequency wavelet transformation respectively.At last,OMP reconstruct algorithm is employed to reconstruct the wavelet transformation coefficients,and then the signal can be finally recovered through Wavelet synthesis.Simulation results demonstrate that,based on wavelet transform,the approach using the adaptive speech compressed sensing has a good performance in reconstruction.
作者 唐力
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第2期64-68,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)(2011CB302903) 国家自然科学基金(60971129)资助项目
关键词 压缩感知 小波分解 K-SVD 稀疏性 compressed sensing wavelet transform K-SVD sparsity
  • 相关文献

参考文献10

  • 1DONOHO D.Compressed sensing[J].IEEE Transactions on Infor-mation Theory,2006,52(4):1289-1306.
  • 2CANDES E J,WAKIN M B.An introduction to compressive sam-pling[J].IEEE Signal Processing Magazine,2007(3):21-30.
  • 3TSAIG Y,DONOHO D.Extensions of compressed sensing[J].Sig-nal Processing,2006,86(3):533-548.
  • 4AHARON M L,ELAD M,BRUCKSTEIN A.K-SVD:An algorithm fordesigning overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4133-4322.
  • 5RUBINSTEIN R,ZIBULEVSKY M,ELAD M.Efficient implemetationof the K-SVD algorithm using batch orthogonal matching pursuit[EB/OL].http:∥www.technion.ac.il/~ronrubin/software.html.
  • 6JI SH H,XUE Y,CARIN L.Bayesian compressive sensing[J].IEEETransactions on Signal Processing,2008,56(6):2346-2356.
  • 7郭海燕,王天荆,杨震.DCT域的语音信号自适应压缩感知[J].仪器仪表学报,2010,31(6):1262-1268. 被引量:27
  • 8CANDS E,TAO T.Decoding by linear programming[J].IEEETransactions on Information Theory,2005,51(12):4203-4215.
  • 9CANDS E,ROMBERG J,TAO T.Stable signal recovery from in-complete and inaccurate measurements[J].Communications on Pureand Applied Mathematics,2006,59(8):1207-1223.
  • 10XU T T,YANG Z,SHAO X.Adaptive compressed sensing ofspeech signal based of data-driven dictionary[C]∥Proceeding ofthe 15th Asia-Pacific Conference on Communication(APCC2009).2009:257-260.

二级参考文献15

  • 1DONOHO D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2TSAIG Y,DONOHO D.Extensions of compressed sensins[J].Signal Processing,2006,86(3):533-548.
  • 3CAND(E)S E J,WAKIN M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008:21-30.
  • 4ROMBERG J,Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 5DUARTE M,DAVENPORTM,TAKHARD,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
  • 6ELAD M,STARCK J L,QUERRE P,et al.Simultaneous cartoon and texture image inpainting using morphological component analysis(MCA)[J].Appl.Comput.Harmon.Anal.2005,19:340-358.
  • 7GEMMEKE JF,CRANEN B.Using sparse representations for missing data imputation in noise robust speech recognition[C].European Signal Processing Conf.(EUSIPCO),Lausanne,Switzerland,August 2008,pp:987-991.
  • 8WANG ZH M,ARCET G R,PAREDEST J L.Colored random projections for compressed sensing[C].ICASSP,2007:873-876.
  • 9JI SH H,CARIN L.Bayesian compressive sensing[J].IEEE Transactions on Signal Processing,2008,56(6):2346-2356.
  • 10BARANIUK R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.

共引文献26

同被引文献27

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部