期刊文献+

一类等距结点上的双周期整插值问题 被引量:1

The 2-Periodic Entire Interpolation on Equidistant Nodes
原文传递
导出
摘要 给定结点组xk=kπ/σ(σ>0,k∈Z),对于正整数m1<m2<m3及满足条件(sum from k=-8 to +∞)︱αk,j︱<∞(j=0,1,2,3)的复数序列{αk,j}k∈Z,寻找整函数T∈B22σ,使其满足插值条件:T(x2k+1)=αk0 T(m1)(x2k)=αk1T(m2)(x2k)=αk2 T(m3)(x2k)=αk3利用插值基多项式的性质建立了具有相同系数行列式的方程组,之后运用克拉默法则给出了整插值问题解存在的充分条件,同时给出相应条件下解的显式. On nodal sets xk=(a〉0.k∈z)given positive integersm1〈m2〈m3and series of complexnumber {ak,i }k∈z satisfying∑^+∞ k=-∞/ak,j/〈∞(j=0,1,2,3)an entire function{ak,j}k∈Zis found satisfying:T(x2k+1)=ak0 T^(m1)(x2k)=ak1 T^(m2)(x2k)=ak2 T^(m3)(x2k)=ak3 By applying the property of basic interpolation polynomials, some equation sets which have the same de terminant of coefficient are established, and then using Cramer' rule, the sufficient condition of the solva bility of the interpolation is obtained. In the end, the explicit formulae of the interpolation function are de termined if it exists.
作者 文晓霞
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期97-100,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10962007) 宁夏自然科学基金资助项目(NZ1027)
关键词 双周期 整函数 插值 等距结点 2-periodic entire function interpolation equidistant node
  • 相关文献

参考文献7

二级参考文献22

  • 1齐秋兰,李翠香.Gamma算子线性组合加权的局部饱和定理[J].西南师范大学学报(自然科学版),2004,29(6):903-907. 被引量:2
  • 2郑华盛,赵宁.非线性双曲型守恒律的高精度MmB差分格式[J].计算力学学报,2006,23(2):218-222. 被引量:2
  • 3Liu Yongping.On entire(0, m1, m2 ,…, mq) - interpolation on equidistant nodes[J].Appro,Theory amp its Appl,1991,7(3):27-34.
  • 4Totik V. Notes on Fourier Series: Strong Approximation [J]. J Approx Theory, 1985, 43:105 -- 111.
  • 5Lenski W. On the Rate of Pointwise Strong (C, a) Summability of Fourier Series [J]. Colloquia Math Soc Janos Bolyai, Approx Theory, 1990, 58:453 -- 486.
  • 6Zygmund A. Trigonometric Series[M]. Third Edition. Cambridge.. Cambridge University Press, 2004:21 -31.
  • 7Brown G, Feng D, MOricz F. Strong Ceshro Summability of Double Fourier Integrals [J]. Acta Math Hungar, 2007, 115(1--2): 1--12.
  • 8Crandall M G, Lions P L. Viscosity Solutions of Hamilton-Jacobi Equations [J]. Trans Amer Math Soc, 1983, 277(1) :1 -- 42.
  • 9Crandall M G, Evans L C, Lions P L. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations [J].Trans Amer Math Soc, 1984, 282(1): 487- 502.
  • 10Osher S, Shu C W. High Order Essentially Nonoseillatory Schemes for Hamilton-Jacobi Equations [J]. SIAM J Numer Anal, 1991, 28: 907--922.

共引文献4

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部