期刊文献+

遗传算法结合神经网络用于傅里叶变换红外光谱法测定航空润滑油中水分 被引量:4

FTIR Determination of Moisture in Aviation Lubricants with the Algorithms of GA and BP-ANN
下载PDF
导出
摘要 采用傅里叶变换红外光谱法测定了航空润滑油中的水分,通过遗传算法(GA)优化选取有效波数点,用误差反向传播神经网络(BP-ANN)进行水分预测计算。模型的预测相关系数为0.957,预测标准偏差为0.022。随机抽取某型航空润滑油样品进行预测并对预测结果进行配对t检验,结果表明:红外光谱定量分析结果与标准方法测定值没有显著性差异,模型可以用于该型在用航空润滑油水分含量现场快速检测。 In fourier transform infrared spectrometric (KTIR) determination of content of moisture in aviation lubricants, the algorithm of genetic algorithms (GA) was applied to the select of a few points of significant wave and the algorithm of back propagation-artificial network (BP-ANN) was applied to presumptive calculation of moisture. Value of correlation coefficients of the model was achieved to 0. 957, and the square errors of prediction (SEP) was 0. 022. The proposed method was used in the forecast of a certain type of aviation lubricants on randomly selected, and the paired t-test was used in the test of predicted values. It was found that there was no significant difference between the standard method and IR quantitative analysis. The model can be used for the determination of moisture in aviation lubricants.
出处 《理化检验(化学分册)》 CAS CSCD 北大核心 2012年第4期388-391,399,共5页 Physical Testing and Chemical Analysis(Part B:Chemical Analysis)
基金 国防预研基金资助课题(9140A19050106JB1409)
关键词 傅里叶变换红外光谱法 遗传算法 误差反向传播神经网络 水分 航空润滑油 FTIR Genetic algorithms Back propagation-artificial network Moisture Aviation lubricants
  • 相关文献

参考文献6

二级参考文献24

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:567
  • 2赵杰文,张海东,刘木华.利用近红外漫反射光谱技术进行苹果糖度无损检测的研究[J].农业工程学报,2005,21(3):162-165. 被引量:75
  • 3赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,26(1):136-140. 被引量:55
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 5Ann Peirs, Jeroen Tirry , Bert Verlinden et al.. Effect of biological variability on the robustness of NIR models for soluble solids content of apples [ J ]. Postharvest Biology and Technology, 2003, 28(3) : 269-280
  • 6O. Kleynen, V. Leemans, M.-F. Selection of the most efficient wavelength bands for "Jonagold" apple sorting[J]. Postharvest Biology and Technology, 2003, 30(1) : 221-232
  • 7I. Wayan Budiastra, Yoshio Ikeda, Takahisa Nishizu. Optical methods for quality evaluation of fruits (part 2)-prediction of individual sugars and malic acid concentrations of apples and mangoes by the developed NIR reflectance system[J].J. JSAM, 1998, 60(3): 117-128
  • 8V. Steinmetz, J. M. Roger, E. Molto et al.. On-line fusion of color camera and spectrophotometer for sugar content prediction of apples[J]. J. Agric. Engng. Res., 1999, 73(4): 207-216
  • 9K. H. S. Peiris, G. G. Dull, R. G. Leffler et al.. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers : implications for the development and use of NIR spectrometric techniques[J]. Hori Science, 1999, 34(1) :114-118
  • 10Ann Peirs, J. Lammertyn, K. Ooms et al.. Prediction of the optimal picking date of different apple cultivars by means of VIS/ NIR-spectroscopy [J]. Postharvest Biology and Technology, 2000, 21(3):189-199

共引文献48

同被引文献65

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部