期刊文献+

Fast DOA estimation algorithm for MIMO sonar based on ant colony optimization 被引量:4

Fast DOA estimation algorithm for MIMO sonar based on ant colony optimization
下载PDF
导出
摘要 The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method. The maximum likelihood (ML) estimator demonstrates remarkable performance in direction of arrival (DOA) estimation for the multiple input multiple output (MIMO) sonar. However, this advantage comes with prohibitive computational complexity. In order to solve this problem, an ant colony optimization (ACO) is incorporated into the MIMO ML DOA estimator. Based on the ACO, a novel MIMO ML DOA estimator named the MIMO ACO ML (ML DOA estimator based on ACO for MIMO sonar) with even lower computational complexity is proposed. By extending the pheromone remaining process to the pheromone Gaussian kernel probability distribution function in the continuous space, the pro- posed algorithm achieves the global optimum value of the MIMO ML DOA estimator. Simulations and experimental results show that the computational cost of MIMO ACO ML is only 1/6 of the MIMO ML algorithm, while maintaining similar performance with the MIMO ML method.
机构地区 College of Marine
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期173-178,共6页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China (60972152) the National Laboratory Foundation of China (9140C2304080607) the Aviation Science Fund (2009ZC53031) the Doctoral Foundation of Northwestern Polytechnical University (CX201002)
关键词 multiple input multiple output (MIMO) sonar ant colonyoptimization (ACO) maximum likelihood (ML) direction of arrival(DOA) computational complexity. multiple input multiple output (MIMO) sonar, ant colonyoptimization (ACO), maximum likelihood (ML), direction of arrival(DOA), computational complexity.
  • 相关文献

参考文献2

二级参考文献24

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2程福雁,钟国民,李友善.二级倒立摆的参变量模糊控制[J].信息与控制,1995,24(3):189-192. 被引量:33
  • 3张军英,敖磊,贾江涛,高琳.求解TSP问题的改进蚁群算法[J].西安电子科技大学学报,2005,32(5):681-685. 被引量:25
  • 4E. Fishier, A. Haimovich, R. Blum, et al. Spatial diversity in radars-models and detection performance. IEEE Trans. on Signal Processing, 2006, 54(3): 823-838.
  • 5D. R. Fuhrrnann, G. S. Antonio. Transmit beamforming for MIMO radar systems using partial signal correlation. Proc. of the 38th Asilomar Conference on Signals, Systems and Computers, 2004, 1: 295-299.
  • 6E C. Robey, S. Coutts, D. D. Weikle. MIMO radar theory and exprimental results. Proc. of the 38th Asilomar Conference on Signals, Systems and Computers, 2004, 1: 300-304.
  • 7L. Jian, R Stoica. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007, 24(5): 106-114.
  • 8A. M. Haimovich, R. S. Blum, L. J. Cimini. MIMO radar with widely separated antennas. 1EEE Signal Processing Magazine, 2008. 25(1): 116-129.
  • 9L. Jian, E Stoica, et al. On parameter identifiability of MIMO Radar. IEEESignal Processing Letters, 2007, 14(12): 968-971.
  • 10N. H. Lehmann, E. Fisher, A. M. Haimovich. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Trans. on Signal Processing, 2007, 55(5): 2215-2225.

共引文献15

同被引文献24

  • 1Cheng Q, Lei H, and So H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
  • 2Zeng W, So C and Lei H. /p-MUSIC: Robust direction-of- arrival estimator for impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4296-4308.
  • 3Vincent F, Besson O, and Chaumette E. Approximate maximum likelihood direction of arrival estimation for two closely spaced sources[C]. Proceedings of the 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Martin, France, 2013: 320-323.
  • 4Heidenreich P and Zoubir M. Fast maximum likelihood DOA estimation in the two-target case with applications to automotive radar[J]. Signal Processing, 2013, 93(12): 3400-3409.
  • 5Lee Y, Hudson E, and Yao K. Acoustic DOA estimation: an approximate maximum likelihood approach[J]. IEEE Systems Journal, 2014, 8(1): 131-141.
  • 6Park S, Choi H, Yang W, et al.. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources[C]. Proceedings of the llth International Conference on Advanced Communication Technology, Piscataway, USA, 2009: 2295-2298.
  • 7Wang H, Kay S, and Saha S. An importance sampling maximum likelihood direction of arrival estimator[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5082-5092.
  • 8Li X and Huang J. Bayesian high resolution DOA estimator based on importance sampling[C]. Proceedings of IEEE Oceans 2005, Washington, D.C., USA, 2005, 1: 611-615.
  • 9Di C, Elio D, and Giovanni J. Wideband source localization by space-time MUSIC subspace estimation[C]. Proceedings of 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013: 331-336.
  • 10Choi W and Sarkar K. Minimum norm property for the sumof the adaptive weights for a direct data domain least squares algorithm[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 1045-1050.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部