摘要
可压缩可混溶油、水三维渗流动边值问题的研究,对重建盆地发育中油气资源运移、聚集的历史和评估油气资源的勘探与开发有重要的价值,其数学模型是一组非线性耦合偏微分方程组的动边值问题.该文对有界域的动边值问题提出一类新的二阶修正迎风差分格式,应用区域变换、变分形式、能量方法、差分算子乘积交换性理论、高阶差分算子的分解、微分方程先验估计的理论和技巧,得到了最佳l^2误差估计结果.该方法已成功应用到油资评估的数值模拟中.它对这一领域的模型分析,数值方法和软件研制均有重要的价值.
The research of the three-dimensional compressible miscible (oil and water) displace- ment problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in basin evolution, as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For a generic case of three-dimensional bounded region, the authors put forward a kind of upwind finite difference schemes and make use the calculus of variations, the change of variables and the theory of a priori estimates and techniques. Optimal order estimates in 12 norm are derived for the errors in approximate solutions. The research is important both theoretically and practically for model analysis in the field, model numerical method and software development. Thus, the well-known problem is solved.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2012年第2期271-289,共19页
Acta Mathematica Scientia
基金
国家重点基础研究专项经费项目(G19990328)
国家攻关项目(20050200069)
国家自然科学基金(10771124
10372052
11101244)
国家教育部博士点基金(20030422047)
山东省自然科学基金(ZR2009AQ012)
山东大学自主创新基金(2010TS031)资助
关键词
可压缩渗流
三维动边界
迎风分数步差分
最佳l^2
估计
实际应用
Compressible displacement
Three-dimensional moving boundary
Upwind finite difference fractional steps
12 error estimate
Actual application.