期刊文献+

比例边界有限元法分析静电场问题 被引量:1

Electrostatic Field Problems of the Scaled Boundary FEM
下载PDF
导出
摘要 基于拉普拉斯方程和边界条件,推导了比例中心选择在指定均一电位直线边界上的比例边界有限元公式,并将其应用到有限域和开域静电场分析中.当比例中心选择在指定均一电位直线边界或绝缘直线边界上时,可以只离散其余边界,使得数据准备工作量和计算量大大降低.数值解和理论解对比结果表明:比例边界有限元法具有精度高、数据准备量小、且处理开域静电场问题相当方便的特点. Based on Laplace equation and boundary conditions, scaled boundary finite element formula with scaled center at the boundary of designated voltage is derived. Then this method is applied to the electrostatic analysis of finite or opening field. When the boundary center is chosen at the boundary of designated voltage or insulation, on-ly the other boundaries are to be made discrete, which can reduce the amount of data and computational capacity remarkably. The numerical results are compared with the exact solutions in this paper. It is proved that the scaled boundary finite element method has high precision as well as less amount of data, and that it is more convenient to solve opening electrostatic field.
作者 姜宇驰
出处 《常熟理工学院学报》 2012年第2期41-48,共8页 Journal of Changshu Institute of Technology
关键词 静电场 比例边界有限元 开域 electrostatic field scaled boundary finite element method opening field
  • 相关文献

参考文献10

二级参考文献40

  • 1李珏,金吾根,薛馨,吴佳毅.Trefftz间接法解自由面渗流问题[J].计算力学学报,2005,22(3):295-298. 被引量:6
  • 2周焕林,牛忠荣,王秀喜.三维位势问题边界元法中几乎奇异积分的正则化[J].计算物理,2005,22(6):501-506. 被引量:11
  • 3李亚莎,王泽忠,卢斌先.三维静电场线性插值边界元中的解析积分方法[J].计算物理,2007,24(1):59-64. 被引量:6
  • 4张石峰,李茜,高佩玲.天然差分方法在地下水渗流问题中的应用[J].计算物理,2007,24(3):307-312. 被引量:4
  • 5WolfJ P. The Scaled Boundary Finite Element Method. Chichester: John Wiley and Sons, 2003
  • 6Deeks A J, Chidgzey S R. Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method. Eng Fract Mech, 2005, 72(13): 2019-2036
  • 7Song C M, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput Struct, 2002, 80(2): 183-197
  • 8Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng Fract Mech, 2006, 73(12): 1711-1731
  • 9Song C M. A super-element for crack analysis in the time domain. Int J Numer Method Eng, 2004, 61(8): 1332- 1357
  • 10Song C M, WolfJ P. The scaled boundary finite-element method: Analytical solution in frequency domain. Comp Method Appl Mech Eng, 1998, 164(1-2): 249-264

共引文献58

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部