期刊文献+

结合视觉注意和纹理特征提取感兴趣区域算法 被引量:3

Extraction Algorithm of Region of Interest with Visual Attention and Texture Feature
下载PDF
导出
摘要 针对图像底层特征特别是纹理特征对提取感兴趣区域(region of interest,ROI)影响程度的问题,利用眼动实验数据得到图像的ROIeye和最佳权重w,提出了一个结合视觉注意和纹理特征提取的ROI算法.该算法首先提取纹理特征并归一化特征关注图,然后计算图像在w下的显著图,通过二值化和形态学操作提取图像的特征ROI.采用相关性分析,分析纹理特征对ROI提取的影响.实验结果表明该算法的总体效果良好,特别是对于目标对象纹理信息较丰富的图像,能准确地提取图中ROI. For the point of extraction region of interest(ROI) influenced by low-level features especially texture feature in image,using ROIeye got by eye movements data and optimal weight w,a hybrid ROI extraction algorithm is proposed with visual attention and texture feature.The algorithm extracts texture feature in image,normalizes the feature conspicuity maps,calculates saliency maps with optimal weight w,then gets the ROI after binarization and morphological operation.This paper analyses that texture feature has influence on extraction ROI from quantitative and qualitative.Experimental result shows that the algorithm can exactly extract ROI when texture feature of target object is obvious in image.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第5期1135-1140,共6页 Journal of Chinese Computer Systems
基金 湖南省自然科学基金项目(11JJ3067)资助 国家自然科学基金项目(60970098 61173122)资助 中央高校基本科研业务费专项资金项目(201021200062)资助 浙江大学CAD&CG国家重点实验室开放项目(A1011)资助
关键词 纹理 眼动 ROI 权重 显著图 texture eye movements ROI weight saliency map
  • 相关文献

参考文献3

二级参考文献19

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 3ENSER P, SANDOM C. Towards a comprehensive survey of the semantic gap in visual image retrieval[C]. //Proceedings of Ihe Second, International Conference on Image and Video Retrieval (CIVR). Berlin, Germany: Springer-Verlag Press, 2003:291-299.
  • 4PRATIKAKIS I, VANHAMEL I, SAHLI H, et al. Unsupervised watershed-driven region-based image retrieval [J]. IEE Vision Image and Signal Process, 2006, 153 (3) : 313-322.
  • 5ITTI L, KOCH C. Computational modeling of visual attention [J ]. Nature Reviews Neuroscience,2001,2 ( 3) : 194-230.
  • 6沈兰荪,蔡轶珩.张新峰.中国舌象的采集与分析[M].北京:北京工业大学出版社.2007.
  • 7Kuroda Kazuhiro,Masafumi Hagiwara.An image retrieval system by impression words and specific object names-IRIS[J].Neurocomputing,2002,43 (1):259 ~ 276.
  • 8Shoji Tanaka,Masayuki Inoue,Michitoshi Ishiwaka,et al.A method for extracting and analyzing "Kansei" factors from pictures[A].In:IEEE First Workshop on Multimedia Signal Processing[C],Princeton,New Jersey,USA,1997:251 ~ 256.
  • 9The Color Science Association of Japan.Color Science Handbook[M].Tokyo,Japan:Tokyo University Press,1991.
  • 10Se Yoon Jeong,Kyuheon Kim,Byung Tae Chun,et al.Entropy and color correlation features for image indexing[A].In:IEEE SMC ' 99 Conference Proceedings[C],Tokyo,Japan,1999,2:895 ~899.

共引文献48

同被引文献21

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部