期刊文献+

一种改进的自适应谱聚类图像分割算法 被引量:4

An improved adaptive spectral clustering for image segmentation
下载PDF
导出
摘要 目的提出一种改进的自适应谱聚类图像分割算法,该算法能自动选择出最优尺度参数从而提高谱聚类算法分割的准确率。方法利用约束条件优化相关准则函数,对相似度量函数自动学习迭代并得到最优尺度参数,再运用基于Nystr m估计的谱聚类算法得到最后的图像分割结果。选择对不同性质的纹理图像采用适合的相似度量函数并应用本文的算法进行图像分割,最后与k-均值算法和预分割后再使用人工调整到最优参数的谱聚类算法的分割结果进行了比较。结果这种改进的自动选择最优尺度参数的谱聚类算法在分割效果上较其它两种聚类算法能得到更好的分割结果。结论本文提出的改进方法,能使谱聚类算法的图像分割效果更理想。 Objective To propose an improved adaptive spectral clustering method for image segmentation to allow automatic selection of the optimal scaling parameters and enhance the accuracy of spectral clustering.Methods Using constrain conditions for optimizing the criterion function and determining the optimal scaling parameters by iteration,the final image segmentation was achieved through spectral clustering based on Nystr?m approximation.We chose suit weight functions for different texture images,and used the proposed method for image segmentation.The k-means algorithm and the method of spectral clustering after pre-segmentation by manually choosing the scaling parameter were compared with the proposed method.Results The improved spectral clustering algorithm with automatic selection of the optimal scaling parameters achieved better results of image segmentation than the other two methods.Conclusion The proposed algorithm can improve the accuracy of spectral clustering for image segmentation.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2012年第5期655-658,663,共5页 Journal of Southern Medical University
基金 国家自然科学基金(81000642)
关键词 谱聚类 图像分割 自适应 Nystrm估计 spectral clustering image segmentation adaptive Nystrom approximation
  • 相关文献

参考文献12

  • 1Ulrike VL.A tutorial on spectral clustering[J].Stat Comput,2007,17(4):395-416.
  • 2Zelnik-Manor L,Perona P.Self-Tuning spectral clustering[C]//advances in neural information processing systems(NIPS).Cambridge,MA:MIT Press,2004.
  • 3赵凤,焦李成,刘汉强,公茂果.半监督谱聚类特征向量选择算法[J].模式识别与人工智能,2011,24(1):48-56. 被引量:29
  • 4卜德云,张道强.自适应谱聚类算法研究[J].山东大学学报(工学版),2009,39(5):22-26. 被引量:16
  • 5Wen-Yen C,Song YQ,Bai HJ,et al.Parallel spectral clustering indistributed systems[J].IEEE Trans Pattern Anal Mach Intell,2011,33(3):568-86.
  • 6徐秋平,郭敏,王亚荣.基于分水岭变换和图割的彩色图像快速分割[J].计算机工程,2009,35(19):210-212. 被引量:18
  • 7陈应良,王士同,钱蓉.基于Nystrm方法的图像谱分割算法的聚类改进[J].计算机工程与设计,2008,29(13):3399-3401. 被引量:4
  • 8Dhillon IS,Guan Y,Kulis B.Weighted graph cuts withouteigenvectors a multilevel approach[J].IEEE Trans Pattern AnalMach Intell,2007,29(11):1944-57.
  • 9Shi JB,Malik J.Normalized cuts and image segmentation[J].IEEETrans Pattern Anal Mach Intell,2000,22(8):888-905.
  • 10Ng A,Jordan M,Weiss Y.On spectral clustering:analysis and analgorithm[C]//Advances in neural information processing systems(NIPS).Cambrige,MA:MIT press,2002.

二级参考文献50

  • 1闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 2Boykov Y, Funka-Lea G. Graph Cuts and Efficient N-D Image Segmentation[J]. International Journal of Computer Vision, 2006, 70(2): 109-131.
  • 3Juan O, Boykov Y. Active Graph Cuts[C]//Proc. of IEEE Computer Society Conference of Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2006.
  • 4Xu Ning, Ahuja N, Bansal R. Object Segmentation Using Graph Cuts Based Active Contours[J]. Computer Vision and Image Understanding, 2007, 107(3): 210-224.
  • 5Rother C, Kolmogorov V, Blake A. GrabCut: Interactive Foreground Extraction Using Iterated Graph Cuts[C]//Proc. of SIGGRAPH'04. Los Angeles, California, USA: ACM Press, 2004.
  • 6Li Yin, Sun Jian, Tang Chi-Keung, et al. Lazy Snapping[C]//Proc. of SIGGRAPH'04. Los Angeles, California, USA: ACM Press, 2004.
  • 7Lombaert H, Sun Yiyong, Grady L, et al. A Multilevel Banded Graph Cuts Method for Fast hnage Segmentation[C]//Proc. of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2005.
  • 8FiEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98) :298-305.
  • 9LUXBURG von U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4) :395-416.
  • 10NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[ C ]//Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2002.

共引文献62

同被引文献27

  • 1闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 2高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 3王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 4章毓晋.图像工程[M].3版.北京:清华大学出版社,2013.
  • 5Chang H, Yeung D Y. Robust path-based spectral clustering [ J ] Pattern Recognition ,2008,41 ( 1 ) : 191 -203.
  • 6Btihler T, Hein M. Spectral clustering based on the graph p-Lapla- cian [ C ~ff Proceedings of the 26th Annual International Confe- rence on Machine Learning,New York :ACM,2009:81 -88.
  • 7Hamerly G. Making k-means even faster[ C ]//SIAM International Conference on Data Mining, Ohio : SDM ,2010 : 130 -140.
  • 8Elkan C. Using the triangle inequality to accelerate k-means[ C]// Proceedings of the 20th International Conference on Machine Learning(ICML) , WA,2003 : 147 -153.
  • 9索利姆.Python计算机视觉编程[M].北京:人民邮电出版社,2014:216-218.
  • 10Menzies T, Greenwald J, Frank A. Data Mining Static Code Attributes to Learn Defect Predictors [J]. IEEE Transactions on Software Engineering, 2007, 33 (1) .. 2-13.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部