期刊文献+

基于混合迭代滤波的SAR图像相干斑抑制 被引量:6

SAR Image Despeckling Based on Mixed Iteration Filtering
下载PDF
导出
摘要 该文将变窗Lee滤波与自蛇扩散结合,提出了一种抑制SAR图像相干斑噪声的混合迭代滤波新算法,并给出了SAR图像噪声方差的一种有效估计方法。该算法首先估计SAR图像局部统计参量,进而通过改进的变窗Lee滤波对SAR图像进行平滑去噪,接着利用自蛇扩散去除Lee滤波难以平滑的孤立点噪声与边缘噪声。在Lee滤波与自蛇扩散的混合迭代中,Lee滤波的窗尺度随迭代次数的增加而增大,从而在保护SAR图像边缘细节的同时,同质区得到更好平滑。实验结果表明,与已有多种抑斑算法相比,该文算法在SAR图像抑斑与边缘保护方面均获得了更好的性能。 A novel mixed iteration filtering algorithm is presented to reduce speckle noise in SAR image by combining the Lee filter with variable-size windows and self-snake diffusion,and an effect method to estimate noise’s variance of SAR image is given.Local statistical parameters of SAR image is first estimated,and then SAR image is smoothed by improved Lee filter with variable-size windows.Then self-snake diffusion is used to remove the remaining isolated points noise and edge noise in the image smoothed by Lee filter.The window size of Lee filter will be increased with the number of mixed iteration,and thus homogeneous regions of SAR image are smoothed better while image edge is protected.The experimental results show that,compared with several kinds of despeckling algorithms,the proposed algorithm has better performance in speckle suppression and edge protection.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第5期1038-1044,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872139) 陕西省教育厅自然科学研究项目(11JK0983)资助课题
关键词 合成孔径雷达图像 相干斑 混合迭代 Lee滤波 自蛇扩散 SAR image Speckle Mixed iteration Lee filter Self-snake diffusion
  • 相关文献

参考文献14

二级参考文献66

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2吴艳,沈博,廖桂生.基于多方向小波模糊融合的SAR图像边缘提取[J].西安电子科技大学学报,2006,33(5):691-695. 被引量:5
  • 3Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images. Boston MA: Artech House, 1998" 158-187.
  • 4Lee J S. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165-168.
  • 5Lopes A, Touzi R, and Nezry E. Adaptive speckle filters and scene heterogeneity. IEEE Transactions Geoseience and Remote Sensing, 1990, 28(6): 992-1000.
  • 6Lopes A, Nezry E, and Touzi R, et al.. Maximum a posteriori filtering and first order texture models in SAR images. Proc. IGARSS'90, Washington, D.C., May 20-24, 1990: 2409-2412.
  • 7Bhuiyanr M I H, Ahmad M O, and Swamy M N S. Spatially adaptive wavelet- based method using the cauchy prior for denoising the SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 17(4): 500-507.
  • 8Bianchi T, Argenti F, and Alparone L. Segmentation-based MAP despeckling of SAR images in the undecimated Wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2728-2742.
  • 9Stian S and Torbjφrn E. A stationary wavelet-domain wiener filter for correlated speckle. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1219-1230.
  • 10Xie H, Pierce L E, and Ulaby F T. Statistical properties of logarithmically transformed speckle. IEEE Transactions on Geoseience and Remote Sensing, 2002,40(3): 721-727.

共引文献50

同被引文献57

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部