摘要
提出了新的带脉冲控制的双向耦合混沌系统,根据脉冲微分方程稳定性理论,研究了耦合混沌系统的给定流行的广义同步问题。混沌系统的广义同步研究通常是要考虑混沌系统是满足Lipschitz条件的,但实际上混沌吸引子的边界一般是难以准确得到的。在研究广义同步过程中,采用新的构造方法则不需要以混沌吸引子的具体边界为条件,通过理论证明,得到了混沌系统模型实现广义同步的充分而非保守条件。同时,采用混沌和超混沌系统,给定线性和非线性流形分别进行了数值仿真,所得结果表明理论是有效的。
The new schemes of bi-coupled chaotic systems via impulsive control were proposed in this paper. Based on impulsive differential equation stability theory, the problem of bi-coupled generalized synchronization with a given manifold was studied. Lipschitz conditions of chaotic systems often ensure the occurrence of generalized synchronization. However, it is difficult to get the accurate value of the boundaries of chaotic systems. In this paper, the specific boundaries of chaotic attractors are not necessary to investigate generalized synchronization. Simple and less conservative criteria were achieved for generalized synchronization in bi-coupled chaotic systems with a given mani- fold. Numerical simulations of chaotic or hyper-chaotic systems with linear or nonlinear manifolds further demonstrates the effectiveness of the scheme.
出处
《计算机仿真》
CSCD
北大核心
2012年第5期183-187,共5页
Computer Simulation
基金
江南大学青年基金资助(573)
国家自然科学青年基金(11002061)
关键词
混沌
广义同步
双向耦合
脉冲控制
超混沌
Chaos
Generalized synchronization
Bi-coupled
Impulsive control
Hyper-chaos