期刊文献+

分类数据的聚类边界检测技术 被引量:5

Cluster boundary detection technology for categorical data
下载PDF
导出
摘要 随着分类属性数据集的应用越来越广泛,获取含有分类属性数据集的聚类边界的需求也越来越迫切。为了获取聚类的边界,在定义分类数据的边界度和聚类边界的基础上,提出了一种带分类属性数据的聚类边界检测算法——CBORDER。该算法首先利用随机分配初始聚类中心和边界度对类进行划分并获取记录边界点的证据,然后运用证据积累的思想多次执行该过程来获取聚类的边界。实验结果表明,CBORDER算法能有效地检测出高维分类属性数据集中聚类的边界。 With the wide application of categorical-attribute dataset,the demand of obtaining the cluster boundary of categorical-attribute dataset becomes more and more urgent.In order to get cluster boundaries,a categorical-attribute data boundary detection algorithm: CBORDER(Categorical dataset BORDER detection algorithm) was proposed.In this algorithm,firstly,this paper initialized the center of cluster by using random allocation and utilizing boundary-degree to partition clusters;at the same time,the evidence of captured boundary records was got.Then,based on the evidence accumulation,the above procedure was executed repeatedly to acquire the boundaries of clusters at the end.The experimental results demonstrate that CBORDER can effectively detect the boundaries of the high-dimensional categorical data.
作者 邱保志 王波
出处 《计算机应用》 CSCD 北大核心 2012年第6期1654-1656,1669,共4页 journal of Computer Applications
基金 河南省重点科技攻关项目(112102310073) 河南省教育厅自然科学研究计划项目(2009A520028)
关键词 边界度 证据积累 聚类边界 分类数据 boundary-degree evidence accumulation cluster boundary categorical data
  • 相关文献

参考文献12

  • 1ESTER M, KRIEGEL H P, SANDER J. A density-based algorithm for discovering clusters in large spatial databases with noise[ C]// Proceedings of the 2nd International Conference on Knowledge Dis- covery and Data Mining. Oregon, Portland: AAAI Press, 1996: 226 - 231.
  • 2XIA CHENYI, HSU WYNNE, LEE MONGLI, et al. BORDER: ef- ficient computation of boundary points[ J]. Knowledge and Data En- gineering, 2006, 18(3) : 289 -303.
  • 3QIU BAOZHI, YUE FENG, SHEN JUNYI. BRIM: A efficient boundary points detecting algorithm[ C]// Proceedings of Advances in Knowledge Discovery and Data Mining. Berlin: Springer-Verlag, 2007:761-768.
  • 4邱保志,刘洋,陈本华.基于网格熵的边界点检测算法[J].计算机应用,2008,28(3):732-734. 被引量:7
  • 5邱保志,岳峰.基于引力的边界点检测算法[J].小型微型计算机系统,2008,29(2):279-282. 被引量:3
  • 6邱保志,曹鹤玲.一种高效的基于联合熵的边界点检测算法[J].控制与决策,2011,26(1):71-74. 被引量:6
  • 7NOSOVSKIY G V, LIU DONGQUAN, SOURINA O. Automatic clustering and boundary detection algorithm based on adaptive influ- ence function[ J]. Pattern Recognition, 2008, 41 (9) : 2757 - 2776.
  • 8BARBARA D, COUTO J, LI YI. COOLCAT: an entropy-based algorithm for categorical clustering [ C ]// Proceedings of the eleventh International Conference on Information and Knowledge Management. New York: ACM Press, 2002:4-9.
  • 9FRED A L N, JAIN A K. Data clustering using evidence accumulation [ C ]// Proceedings of the 16th International Conference on Pattern Recognition. Washington, DC : IEEE Computer Society, 2002 : 276 - 280.
  • 10FRED A L N, JAIN A K. Evidence accumulation clustering based on the k-means algorithm [ C ]// Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition. London : Springer-Verlag, 2002:303 - 333.

二级参考文献16

  • 1邱保志,沈钧毅.网格聚类中的边界处理技术[J].模式识别与人工智能,2006,19(2):277-280. 被引量:13
  • 2邱保志,张西芝.基于网格的参数自动化聚类算法[J].郑州大学学报(工学版),2006,27(2):91-93. 被引量:14
  • 3邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 4Han J W, Kamber M. Data mining: Concepts and techniques[M]. 2nd ed. New York: Morgan Kaufmann, 2006: 384.
  • 5Xia C Y, Hsu W, Lee M L, et al. Border: Efficient computation of boundary point[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3): 289-303.
  • 6Ester M, Kriegel H P, Sander J. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. Proc of the 2nd Int Conf on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231.
  • 7Qiu B Z, Yue F, Shen J Y. BRIM: An efficient boundary points detecting algorithm[C], Proc of Advances in Knowledge Discovery and Data Mining. Heidelberg: SDrin~,er, 2007: 761-768.
  • 8Karypis G, Han E H, Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling[J]. IEEE Computer, 1999, 32(8): 68-75.
  • 9Hsu C M, Chen M S. Subspace clustering of high dimensional spatial data with noises[C]. Proc of Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer, 2004: 31-40.
  • 10Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.

共引文献10

同被引文献41

  • 1於跃成,刘彩生,生佳根.分布式约束一致高斯混合模型[J].南京理工大学学报,2013,37(6):799-806. 被引量:3
  • 2蒋盛益,李庆华.一种基于引力的聚类方法[J].计算机应用,2005,25(2):286-288. 被引量:9
  • 3FAHIM A.M,SALEM A.M,TORKEY F.A,RAMADAN M.A.An efficient enhanced k-means clustering algorithm[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1626-1633. 被引量:30
  • 4Tan P N, Michael Steinbach, Vipin K'umar. Introduction to data mining[M]. New Jersey: Pearson Education, 2007: 305-402.
  • 5Xia C, Hsu W, Lee M L, et al. BORDER: An efficient computation of boundary points[J]. IEEE Trans onKnowledge and Data Engineering, 2006, 18(3): 289-303.
  • 6Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. Int Conf on Knowledge Discovery and Data Mining. Portland: ACM, 1996: 226-231.
  • 7Qiu B Z, Yue F, Shen J Y. BRIM: An efficient boundary points detecting algorithm[C]. Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2007: 761- 768.
  • 8Qiu B Z, Wang S. A boundary detection algorithm of clusters based on dual threshold segmentation[C]. The 7th Int Conf on Computational Intelligence and Security(CIS). Sanya: IEEE, 2011: 1246-1250.
  • 9Desoer C A. Slowly varying system z = A(t)z[J]. IEEE Trans on Automatic Control, 1969, 14(6): 780-781.
  • 10Datta Souptik,Giannella Chris,Kargupta Hillol.Approximate Distributed K-Means Clustering over a Peer-to-Peer Network[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(10):1372-1388.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部