期刊文献+

Fractal desulfurization kinetics of high-sulfur coal 被引量:7

Fractal desulfurization kinetics of high-sulfur coal
下载PDF
导出
摘要 The pore structure characteristics of high-sulfur coal from Wansheng in Chongqing have been studied by a nitrogen adsorption method (BET). The effects of grinding and pre-treating with nitric acid on the inorganic sulfur content of coal have been investigated. Organic sulfur in coal pretreated with nitric acid was desulfurized by using propylene-glycol-KOH (PG-KOH). Fractal kinetic properties of these two desulfurization procedures were investigated by using fractal geometric theory. The results show that both the specific surface area and pore volume increased with the decrease in particle diameter. The microspore surface of coal had fractal characteristics; the fractal dimension was 2.48. The sulfur content decreased with the decrease in particle diameter by grinding. After pretreatment with nitric acid, the desulfurization ratio (DFR) of inorganic sulfur increased to over 99% and the DFR of total sulfur to over 70%. The desulfurization procedure of inorganic sulfur had fractal kinetic characteristics; its reactive frac- tal dimension was 2.94. The organic sulfur desulfurization procedure by PG-KOH was also tallied with fractal kinetic properties; the reactive fracta! dimension was 2.57. The effect of temperature on the desul- furization ratio of organic sulfur can be described with an Arrhenius empirical equation. The rate constant, pre-exponential factor and the activation energy of the reaction increased with the decrease in particle diameter. The pore structure characteristics of high-sulfur coal from Wansheng in Chongqing have been studied by a nitrogen adsorption method (BET). The effects of grinding and pre-treating with nitric acid on the inorganic sulfur content of coal have been investigated. Organic sulfur in coal pretreated with nitric acid was desulfurized by using propylene-glycol-KOH (PG-KOH). Fractal kinetic properties of these two desulfurization procedures were investigated by using fractal geometric theory. The results show that both the specific surface area and pore volume increased with the decrease in particle diameter. The microspore surface of coal had fractal characteristics; the fractal dimension was 2.48. The sulfur content decreased with the decrease in particle diameter by grinding. After pretreatment with nitric acid, the desulfurization ratio (DFR) of inorganic sulfur increased to over 99% and the DFR of total sulfur to over 70%. The desulfurization procedure of inorganic sulfur had fractal kinetic characteristics; its reactive fractal dimension was 2.94. The organic sulfur desulfurization procedure by PG-KOH was also tallied with fractal kinetic properties; the reactive fractal dimension was 2.57. The effect of temperature on the desulfurization ratio of organic sulfur can be described with an Arrhenius empirical equation. The rate constant, pre-exponential factor and the activation energy of the reaction increased with the decrease in particle diameter.
出处 《International Journal of Mining Science and Technology》 2012年第1期111-114,共4页 矿业科学技术学报(英文版)
关键词 COAL Desulfurization kinetics FRACTAL Particle diameter Nitric acid Propylene-glycoI-KOH 动力学性能 煤脱硫 分形几何理论 高硫 孔隙结构特征 脱硫过程 酸预处理 比表面积
  • 相关文献

参考文献6

二级参考文献39

共引文献27

同被引文献68

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部