期刊文献+

大范围直线运动梁的非线性共振响应计算

Nonlinear resonant response of a beam undergoing large overall straight-line motions
下载PDF
导出
摘要 以两端铰支直梁的大范围直线运动为研究对象,建立了直梁纵横运动的动力学模型,利用多尺度法,求解了纵横向运动微分方程,解决了纵向运动对横向运动的耦合影响关系,为研究非线性动力学特性奠定了基础,并计算了主共振响应.通过对文中的算例结果与非线性有限元计算结果比较,得出两种计算结果相差很小,证明该动力学模型是正确的.从计算结果可知,在一阶共振外部激振条件下,2,3阶振幅同样为零. The dynamic model for the longitudinal and transverse movements of a simply supported beam with large overall straight-line motions is established.The coupling relation of the transverse and longitudinal motions is obtained by solving the differential equation with the method of multiple scales,and the principal resonance response calculated.Comparison of the results with those of the nonlinear finite element method shows little difference,which confirms the validity of the dynamic model.The second and third order amplitudes vanish under the condition of a resonant external excitation.
作者 刘建华
出处 《江苏科技大学学报(自然科学版)》 CAS 2012年第2期107-112,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 大范围直线运动 动力学 大挠度振动 非线性 直梁 large overall straight-line motion vibration dynamics large deflection vibration nonlinearity
  • 相关文献

参考文献14

二级参考文献44

  • 1冯志华,胡海岩.直线运动柔性梁非线性动力学——主参数共振与内共振联合激励[J].振动工程学报,2004,17(2):126-131. 被引量:31
  • 2刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海:上海交通大学建筑工程和力学学院,2000.
  • 3Hao Y X, Chen L H, Zhang W. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate [ J]. Journal of Sound and Vibration, 2008,312 : 862 - 892.
  • 4Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2) : 139-- 150.
  • 5Mayo J, Dominguez J, Shabana A A. Geometrically nonlinear formulation of beams in flexible multibody dynamics . Journal of Vibration and Acoustics,1995,117:501-509.
  • 6Sharf I. Geometric stiffening in multibody dynamics formulations [J]. Journal of Guidance, Control and Dynmics, 1995, 18(4): 882--891.
  • 7Yoo H H, Ryan R R, Scott R A. Dynamics of flexible beams undergoing overall motions . Journal of Sound and Vibration, 1995, 181 (2): 261--278.
  • 8Kane TR,Ryan RR,Banerjee AK.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control,and Dynamics,1987,10(2): 139~151
  • 9Nayfeh AH,Mook DT.Nonlinear Oscillations.New York: John Wiley & Sons,1979.304~321
  • 10Hyun SH,Yoo HH.Dynamic modeling and stability analysis of axially oscillating cantilever beams.Journal of Sound and Vibration,1999,228(3): 543~558

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部