期刊文献+

多目标跟踪中目标数量准确识别算法

An Algorithm on Accurate Recognition of Target Number in Multiple Target Tracking
原文传递
导出
摘要 由于场景中存在目标遮挡与重叠的影响,以及检测时产生的分割错误,同一个目标往往被识别为若干运动区域,或者多个目标被识别为同一个运动区域,从而导致目标数量识别错误。为了解决这一问题,提出了一种结合融合与分离操作的理论来分析视频的方法,将多目标跟踪的问题转化成为一个找寻后验极值的问题。采用图论的方法表示观测结果,利用图像序列中目标运动轨迹和外观相似度的信息,将多目标跟踪的问题归结为找寻图中多个最优路径的问题。该方法采用了滑动窗口框架以便统计固定数目帧的信息。实验结果表明该方法能够应对实际中发生的上述现象,达到了准确识别多目标数量的目的。 Due to the noisy foreground segmentation, an object may be represented by several foreground regions and simi- larly one foreground region may correspond to multiple objects. To deal with this problem, we propose merge and split oper- ations to generate new hypotheses to the measurement graph. The multiple target tracking problem as a maximum posteriori problem is proposed, and a graph representation of all observations over time is adopted. To make full use of the visual ob- servations from the image sequence, both motion and appearance likelihood are introduced. The multiple target tracking problem is formulated as finding multiple optimal paths in the graph. The proposed approach uses a sliding window frame- work, which aggregates information across a fixed number of frames. Experimental results show that the method could han- dle this kind of situations and achieve the goals of accurate recognition of target number in multiple target tracking.
作者 王鹏
出处 《光学与光电技术》 2012年第3期42-46,共5页 Optics & Optoelectronic Technology
关键词 多目标跟踪 融合与分离 后验极值 识别 multiple target tracking split and merge of detected regions maximum a posteriori recognition
  • 相关文献

参考文献9

  • 1Alper Yilmaz, Omar Javed, Mubarak Shah. Object tracking: a survey[J]. ACM Comput. Surv. , 2006, 38(4) : 564-565.
  • 2D B Reid. An algorithm for tracking multiple targets [J]. IEEE Trans. Automatic Control, 1979, 24(6) 843-854.
  • 3I J Cox, S L Hingorani. An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking[J].IEEE Trans. Pattern Anal. Machine Intell. , 1996, 18(2): 138-150.
  • 4郝志成,高文.多模跟踪技术在轮式侦察车图像处理器的应用[J].中国光学,2011,4(5):480-488. 被引量:7
  • 5A Genovesio, J Olivo-MarirL Split and merge data association filter for dense multi-target tracking[C]. ICPR, 2004, IV: 677-680.
  • 6C Stauffer, W E L GrimsorL Adaptive background mixture models for real-time tracking[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 1999, 2; 246-252.
  • 7Y Bar-Shalom E Tse. Tracking in a cluttered environment with probabilistic data association[J]. Automatiea, 1975, 32(2) : 451-460.
  • 8J W Suurballe. Disjoint paths in a network[J]. Networks, 1974, 45(3): 125-145.
  • 9J Kang, I Cohen, G G Medioni. Object reacquisition using invariant appearance model[C]. International Conference Pattern Recognition, Cambridge, United Kingdom, 2004: 759-762.

二级参考文献22

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 2Dorin Comaniciu,Peter Meer.Distribution Free Decomposition of Multivariate Data[J]. Pattern Analysis & Applications . 1999 (1)
  • 3Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision . 1998 (1)
  • 4BAY H,TUYTELAARS T,GOOL L V.SURF:Speeded up robustfeatures. Computer Vision and Image Understanding . 2006
  • 5Lowe D.Object Recognition from Local Scale-Invariant Features. Proceedings of the International Conference on Computer Vision . 1999
  • 6Murray DW,Buxton BF.Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • 7Vishal Markandey,Anthony Reid,Sheng Wang.Motion estimation for moving target detection. IEEE Transactions on Aerospace and Electronic Systems . 1996
  • 8Stauffer C,Grimson E.Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 9Kalman R E.A new approach to linear filtering and prediction problem. Trans ASME J Basic Eng . 1960
  • 10Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proceedings . 1993

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部