期刊文献+

视觉注意机制的运动方向异常检测方法

Anomaly detection to motion direction method based on visual attention
原文传递
导出
摘要 针对传统运动方向异常检测方法需要人工参与、智能化较低等缺点,提出了一种新的基于视觉注意机制的运动方向异常检测方法。该方法通过合成源图像的空间导数图与时间导数图获得运动边缘,求取沿空间各方位分布的运动方向特征图。在此基础上,利用所提出的基于运动区域面积的归一化方法对得到的每一幅特征图按照显著性高低分别赋予不同的权重,完成不同运动方向特征的相互竞争。最后融合经过归一化处理的特征图以得到最终的运动显著图。该显著图中运动方向具有显著性的物体得到有效突出,达到了存在多个运动物体的情况时,运动方向上具有显著性的物体能够更加有效、智能地检测出来的目的。 Aiming at the disadvantage of traditional anomaly detection to motion direction such as requirement of human involvement and low intelligence, a novel detection method based on visual attention was proposed. In this method, feature maps of motion direction distributed along every orientation in space were firstly obtained by integrating the spatial and temporal derivatives of source image. On this basis, the new proposed normalization method based on area of motion field was used to endow different weight to all feature maps according to their own saliency, in order to achieve the competition among different motion direction features. The final motion saliency map could be acquired by merging all normalized feature maps. The object with obvious saliency in motion direction was focused in this saliency map, so the destination that detected more effectively and intelligently from multiple object with motion direction saliency could be moving objects.
出处 《红外与激光工程》 EI CSCD 北大核心 2012年第5期1379-1383,共5页 Infrared and Laser Engineering
基金 教育部新世纪优秀人才支持计划(NCET-08-36) 长江学者和创新团队发展计划(IRT0705)
关键词 视觉注意 运动方向 异常检测 显著性 visual attention motion direction anomaly detection saliency
  • 相关文献

参考文献10

  • 1王劲松,颜益安,魏法杰.利用背景高斯核密度估计的运动目标检测方法[J].红外与激光工程,2009,38(2):373-376. 被引量:9
  • 2曾峦,谭久彬,宋胜利,王兰婷.一种改进的运动目标跟踪算法[J].红外与激光工程,2008,37(3):556-560. 被引量:7
  • 3金挺,周付根,白相志.利用核密度估计的空基视频运动目标检测[J].红外与激光工程,2011,40(1):153-158. 被引量:12
  • 4Shic F, Scassellati B. A behavioral analysis of computational models of visual attention [J]. International Journal of Computer Vision, 2007, 73(2): 159-177.
  • 5Itti L. Models of bottom-up and top-down visual attention [D]. Pasadena, Cal: Cal Tech, 2000.
  • 6C. Koch, S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry [J]. Human Neurobiology, 1985, 4: 219-227.
  • 7Laurent Itti, Pierre Baldi. A Principled Approach to detecting surprising events in video [C]//Proc IEEE Int'l Conference on Computer Vision and Pattern Recognition (CVP R), 2005: 1-7.
  • 8Jain R, Kasturi R, Schunck B G. Machine Vision [M]. New York: McGraw-Hill, 1995: 246-248.
  • 9Laurent Itti, Christof Koch, Ernst Niebur. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 10Itti L, Dhavale N, Pighin F. Realistic avatar eye and head animation using a neurobiological model of visual attention [C]//SPIE, 2003, 5200: 64-78.

二级参考文献26

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部