期刊文献+

基于DSP的主动视觉系统 被引量:5

DSP-based Active Vision System
原文传递
导出
摘要 为了提高目标检测的快速性与准确性,简化基于粒子滤波的目标跟踪算法中的直方图计算,提高检测和跟踪算法在基于DSP(数字信号处理器)的主动视觉系统上的运行速度,提出了一种基于DSP的机器人主动视觉系统.该系统通过改进的EMCV(embedded computer vision library)与启发式搜索方法,在DSP上实现了AdaBoost检测算法;利用增量式直方图计算算法实现粒子滤波中颜色直方图与边缘方向直方图的计算,将直方图融合到观测模型中,在DSP上实现并优化了目标跟踪算法.实验证实了该主动视觉系统中算法的快速性与系统的鲁棒性. In order to improve target detection speed and accuracy, simplify particle filter based target tracking algorithm for histogram calculation, and improve the speed of detection and tracking algorithm in the DSP (digital signal processor)- based active vision systems, a DSP-based active vision system is proposed. By improved the EMCV (Embedded Computer Vision Library) and heuristic search methods, the system implements the AdaBoost detection algorithm on the DSP. And in that system, the color histogram and edge orientation histogram in particle filter are calculated by using the incremental histogram calculation algorithm, the histogram is integrated into the observation model, and the target tracking algorithm is optimized on the DSP. The experiment proves the rapidity and the robustness of the proposed algorithm in the active vision system.
出处 《机器人》 EI CSCD 北大核心 2012年第3期354-362,共9页 Robot
基金 国家自然科学基金资助项目(61075027 90820304 91120011) 国家973计划资助项目(G2007CB311003 2009CB724002) 上海市研究生创新基金资助项目(JWCXSL1022) 河北省自然科学基金资助项目(F2010001106)
关键词 主动视觉 目标检测 目标跟踪 ADABOOST 增量式直方图 粒子滤波 DSP active vision target detection target tracking AdaBoost incremental histogram particle filter DSP (digital signal processor)
  • 相关文献

参考文献15

  • 1Rasolzadeh B, Bj6rkman M, Huebner K, et al. An active vision system for detecting, fixating and manipulating objects in the real world[J]. International Journal of Robotics Research, 2010, 29(2/3): 133-154.
  • 2Boev A, Georgiev M, Gotchev A. Optimized visualization of stereo images on an OMAP platform with integrated parallax barrier auto-stereoscopic display[C]//17th European Signal Pro- cessing Conference. 2009: 490-494.
  • 3Ali S S A, Jamil K T, Muhammad E Real time object tracking in a video sequence using a fixed point DSP[C]//4th International Symposium on Visual Computing. Berlin, Germany: Springer- Verlag, 2008: 879-888.
  • 4Viola P, Jones M. Robust real-time object detection[C]//2nd In- ternational Workshop on Statistical and Computational Theo- ries of Vision- Modeling, Learning, Computing, and Sampling. 2002.
  • 5Yang M, Crenshaw J, Augustine B. AdaBoost-based face de- tection for embedded systems[J]. Computer Vision and Image Understanding, 2010, 144(11 ): 1116-1125.
  • 6Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[C]//7th European Conference on Computer Vision: Part I. London, UK: Springer-Verlag, 2002: 661-675.
  • 7王绍钰,蔡自兴,陈爱斌.改进的粒子滤波器目标跟踪方法[J].智能系统学报,2008,3(3):189-194. 被引量:6
  • 8Porikli F. Integral histogram: A fast way to extract histograms in Cartesian spaces[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2005: 829- 836.
  • 9Sizintsev M, Derpanis K G, Hogue A. Histogram-based search: A comparative study[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 1- 8.
  • 10An S J, Peursum R Liu W Q, et al. Efficient algorithms for subwindow search in object detection and localization[C]//IEEE Conference on Computer Vision and Pattern Recognition. Pis- cataway, NJ, USA: IEEE, 2009:264-271.

二级参考文献26

  • 1Birchfield S, Sriram R. Spatiograms versus histograms for region-based tracking [C]//CVPR05, Pages II. San Diego: IEEE CS Press, 2005: 1158- 1163.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. PAMI, 2003, 5: 564-577.
  • 3Zhu W, Levinson S E. Edge orientation-based multiview object recognition [C]// ICPR00. Barcelona.. IEEE CS Press, 2000:1936-1939.
  • 4Melnerney T, Terzopoulos D. T-snakes: Topology adaptive snakes [J]. Medical linage Analysis, 2000, 2: 73- 91.
  • 5Kailath T. The divergence and Bhattacharya distance measures in signal selection [J]. IEEE Transaction on Communication Technology, 1967, 15:52 - 60.
  • 6Porikli F. Integral histogram: A fast way to extract histograms in Cartesian spaces [C]//CVPR05, Pages I. San Diego : IEEE CS Press, 2005 : 829 - 836.
  • 7[1]YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45.
  • 8[2]YANG C J,DURAISWAMI R,DAVIS L.Fast multiple object tracking via a hierarchical particle filter[C]// Proceedings of the Tenth IEEE International Conference on Computer Vision.Beijing,China,2005:212-219.
  • 9[4]WU Y.Robust visual tracking by integrating multiple cues based on co-inference learning[J].International Journal of Computer Vision,2004,58(1):55-71.
  • 10[7]VIOLA P,JONES M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,52(2):137-154.

共引文献48

同被引文献50

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部