期刊文献+

基于自适应投影矩阵的实时视频拼接算法 被引量:6

A REAL-TIME VIDEO STITCHING ALGORITHM BASED ON ADAPTIVE PROJECTION MATRIX
下载PDF
导出
摘要 提出一种快速的算法用于高质量的实时拼接视频。算法分为两个阶段:后台阶段和实时阶段。后台阶段每隔一定周期运行,从同步的视频流中提取图像特征,采用RANSAC和LM算法计算投影矩阵。在实时阶段,采用从前一帧中得到的特征点点对,用光流法跟踪匹配点对的方法,对跟踪得到的点对由投影矩阵计算得到图像误差。若误差超过一定阈值或跟踪到点对数目太少,后台阶段就会再次执行。一旦得到了投影矩阵,就采取一种非线性的融合算法对视频进行融合。通过以上步骤,即使摄像头移动,算法也能运行快速。实验结果显示该算法大大改善了速度,而且拼接质量也很好。 In this paper,a fast algorithm is proposed to stitch video in real-time with high visual quality.This algorithm can be divided into two stages: the background stage and the real-time stage.The background stage runs every few seconds.In this stage,the algorithm extracts frame features from time-synchronised video streams and estimates projection matrix using RANSAC and LM algorithm.In real-time stage,the accumulated error in regard to the tracked pairs of key points is calculated by projection matrix,where the pairs of key points are tracked using optical flow algorithm and the pairs of feature points used are got from previous frame.If the error is larger than certain threshold or there are not enough pairs of key points tracked,the background stage will be run once again.Once the projection matrix is got,an effect nonlinear blending method is taken to blend the videos.By using these procedures,this algorithm can work fast and well even the cameras are moving.Results of experiment show that this algorithm can improve stitching speed greatly with good quality.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第5期81-85,共5页 Computer Applications and Software
基金 上海市科委项目(10dz1201605) 高等学校博士学科点专项科研究基金(20100071120033)
关键词 视频拼接 投影矩阵 光流法 Video stitching Projection matrix Optical flow algorithm
  • 相关文献

参考文献12

  • 1Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision [ C ]//Proceedings of Imaging understanding workshop, 1981,3:674 - 679.
  • 2Lowe D. Distinctive Image Features from Scale-Invariant Keypoints [J]. IJCV ,2004,60(2) :91 - 110.
  • 3Bay H,Tuytelaars T, Cool L, SURF : Speeded Up Robust Features [ J ] ECCV, 2005,3951:404 -417.
  • 4Zhang H, Zeng W. Foreground based Borderline Adjusting for Real Time Multi- Camera Video Stitching[ C ]//Fifth International Confer- ence on Image and Graphics(ICIG) ,2009:355 - 360.
  • 5Kenneth Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least Squares [ J]. The Quarterly of Applied Mathematics, 1944(2) :164 - 168.
  • 6Emmanuel K S. Automatic Seamless Video Mosaic from Webcams Using LSF Techniques [ C]//Conference on Computer Vision and Pattern Recognition Workshop(CVPRW) ,2009 : 17 - 24.
  • 7El-Saban M, Refaat M, Kaheel A, et al. Stitching videos streamed by mobile phones in real-time[J]. ACM-Multimedia,2009 : 1009- 1010.
  • 8El-Saban M, Mostafa Izz, Ayman Kaheel. Fast stitching of videos cap- tured from freely moving devices by exploiting temporal redundancy [ J ]. The International Conference on Image Processing ( ICIP), 2010 : 1193 - 1196.
  • 9Fisehler M, Bolles R. Random sample consensus : A paradigm for model fitting with applications to image analysis and automated cartography [ J]. Communications of the ACM, 1981,24 (6) :381 - 395.
  • 10Zheng M, Chen X, Guo L. Stitching Video from Webcams [ C ]//Lecture Notes In Computer Science ; Proceedings 'of the 4th International Sym- posium on Advances in Visual Computing, Part II,2008:420-429.

同被引文献60

  • 1王浚.我国环境模拟技术现状与发展[J].航空制造技术,2004,47(8):49-52. 被引量:16
  • 2张志刚,周明全.一种快速自适应的角点检测算法[J].计算机应用与软件,2007,24(7):9-11. 被引量:3
  • 3Richard Szeliski. Video mosaics for virtual environ ments [J] . IEEE Computer Graphics and Applica tions, 1996, 16(2): 22-30.
  • 4Lowe D G. Distinctive image features from scale in variant keypoints[J]. International Journal of Com- puter Vision,2004,60(2) :91 110.
  • 5Zhang Z Y. A flexible new technique for camera cali- bration[J].Transactions on Pattern Analysis and Ma chine Intelligence, 2000,22(11) : 1330-1334.
  • 6Xu D, Li Y F,Tan M. Method for calibrating cameras with large distortion in lens[J]. Optical Engineering, 2006,45(4):1 -8.
  • 7Basri J ,Lowe D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces [C]//Coference on Computer Vision and Pattern Recognition. Puerto Rico: [s. n. ],1997 : 1000-1006.
  • 8Szeliski R, Uyttendaele M, Steedly D. Fast poisson blending using multi splines[C]//Computational Photography(ICCP). Pittsburgh, PA.. IEEE, 2011.. 8-10.
  • 9Brown M, Lowe D G. Recognising Panoramas [J]. Proceedings of Ninth IEEE International Conference on Computer Vision, 2003,2 .. 1218- 1225.
  • 10Duplaquet M L. Building large image mosaics with invisible seam lines [C]//Aerospace Defense Sensing and Controls. [S. 1.] .. International Society for Optics and Photonics, 1998:369- 377.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部