期刊文献+

随机挽回率下第n次违约互换的蒙特卡罗模拟定价 被引量:1

Nth CDS Monte Carlo Pricing Under Stochastic Recovery Rates
下载PDF
导出
摘要 考虑到挽回率是违约互换定价的重要因素,同时获得准确的挽回率也是极其困难的,于是假设挽回率是随机的,并与对应资产违约时间呈Copula类相依结构。在该假设条件下提出一种对第n次违约互换定价的模拟算法。通过实证模拟发现,恒定挽回率,独立随机挽回率和Copula结构的挽回率对应的定价结果相差较大。 Recovery rates play an important role in Nth CDS pricing,while,it's difficult to get realistic recovery rates.We assume that the recovery rates are stochastic and follow different Copulas with corresponding default times.Under this assumption,we develop a simulation algorithm to price the Nth CDS.According to the result of simulation pricing,the prices of Nth CDS are different under the condition of constant recovery rates,stochastic independent recovery rates and Copula structure recovery rates.
作者 吴恒煜 陈鹏
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第2期140-146,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70861003,71171168,70825005) 中国博士后基金资助项目(20110490877) 教育部人文社会科学一般项目(09YJA790092,10YSA790200) 江西省教育厅科技计划项目(GJJ10427)
关键词 随机挽回率 违约互换 COPULA stochastic recovery rates credit default swap copula
  • 相关文献

参考文献15

  • 1Altman E, Brady B, Resti A, et al. The link between default and recovery rates: theory, empirical evidence, and implications [J]. Journal of Business. 2005, 78(6): 2203-2227.
  • 2Chen R, Sopranzetti B. The valuation of default-triggered credit derivatives[J]. The Journal of Financial and Quantitative A- nalysis, 2003, 38(2): 359-382.
  • 3Chen Z, Glasserman P. Fast pricing of basket defauh swaps[ J]. Operations Research. 2008, 56(2) : 286-303.
  • 4Das S R, Fong G, Geng G. Impact of correlated default risk on credit portfolios[J]. Journal of Fixed Income, 2001, (3): 9-19.
  • 5Hull J, Predescu M, White A. The valuation of correlation-dependent credit derivatives using a structural model[ R]. Working Paper, University of Toronto, 2006.
  • 6Hull J, White A. Valuing credit default swaps I: no counterparty default risk[ J]. Journal of Derivatives, 2000, 8( 1 ): 29-40.
  • 7Hull J, White A. Valuing credit default swaps II: modeling clefault eorrelations[J]. Journal of Derivatives, 2001, 8(3) : 12-22.
  • 8Hull J, White A. Valuation of a CDO and an nth to default CDS without monte carlo simulation[J]. Journal of Derivatives, 2004, 12(2): 8-23.
  • 9Joshi M S, Kainth D. Rapid and accurate development of prices and greeks for nth to default credit swaps in the li model[ J]. Quantitative Finance, 2004, 4 (3) : 266-275.
  • 10Li D X. On default correlation: a copula function approach[ J]. Journal of Fixed Income, 2000, (9) : 43-54.

二级参考文献18

  • 1杨文瀚,王燕.信用违约互换的定价模型及实证研究[J].统计与决策,2005,21(04X):37-38. 被引量:6
  • 2Jarrow R,S Turnbull S.Pricing derivatives on financial securities subject to credit risk[J].Journal of Finance,1995:53~85.
  • 3Jarrow R,Lando D,Turnbull S.A Markov model for the term structure of credit risk spreads[J].Review of Financial studies,1997,(10):481~523.
  • 4Kijima M,Komoribayashi.A markov chain model for valuing credit risk derivatives[J].The Journal of Derivatives,Fall,1998:97~108.
  • 5Duffie D.. Credit Swap Valuation [J]. Financial Analysts Journal, 1999, 2: 73-87.
  • 6Hull J. , White A.. Valuing Credit Default Swaps Ⅱ: Modeling Default Correlations [J]. Journal of Derivatives, 2001, 8(3): 12--22.
  • 7Skinner F. S. , Townend T.G.. An Empirical Analysis of Credit Default Swaps [J]. International Review of Financial Analysis, 2002, 11(3):297--309.
  • 8Longstaff F. A. , Mithal S. , Nies E.. Corporate Yield Spreads: Default Risk or Liquidity? New Evidence from the Credit Default Swap Market [J].Journal of Finance, 2005, 60(5): 2213--2253.
  • 9Nelson R.. An Introduction to Copulas [M]. New York: Springer, 1998.
  • 10Sklar A.. Fonctions de repartition a n dimensions et leurs marges [J]. Publication de l'Institut de Statistique de l'Universite de Paris, 1959, 8:229--231.

共引文献27

同被引文献26

  • 1Li D X.On default correlation:A copula function approach[J].The Journal of Fixed Income,2000,9(4):43-54.
  • 2Schonbucher P J.Credit Derivatives Pricing Models:Models,Pricing,Implementation[M].John Wiley&Sons,2003.
  • 3Bielecki T R,Rutkowski M.Credit Risk Modeling,Valuation,and Hedging[M],Springer,2002.
  • 4Hull J C,White A D.Valuation of a CDO and an iV-th to default CDS without Monte Carlo simulation[J].The Journal of Derivatives,2004,12(2):8-23.
  • 5Laurent J P,Gregory J.Basket default swaps,CDOs and factor copulas[J].Journal of Risk,2005,7(4):103-122.
  • 6Iscoe I,Kreinin A.Recursive valuation of basket default swaps[J].Journal of Computational Finance,2006,9(3):95-116.
  • 7Schroter A,Heider P.An analytical formula for pricing m-th to default swaps[J].Journal of Applied Mathematics and Computing,2013,41(1-2):229-255.
  • 8Embrechts P,McNeil A,Straumann D.Correlation:Pitfalls and alternatives[J].Risk,1999,12:69-71.
  • 9Embrechts P,Lindskog F,McNeil A.Modeling dependence with copulas and applications to risk management[J].Handbook of Heavy Tailed Distributions in Finance,2003,8(1):329-384.
  • 10Joshi M S,Kainth D.Rapid and accurate development of prices and Greeks forth to default credit swaps in the Li model[J].Quantitative Finance,2004,4(3):266-275.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部