期刊文献+

高效窄带隙共轭聚合物太阳能电池材料设计及器件性能研究进展

Recent Progress of Design and Device of High Efficiency Low Band Gap Conjugated Polymer Materials for Application in Solar Cells
下载PDF
导出
摘要 窄带隙聚合物材料因能与太阳光谱更好地匹配而备受重视,是聚合物太阳能电池的研究热点。按照窄带隙聚合物给体单元的结构分类,总结了含芴、硅芴、咔唑、环戊二烯并双噻吩、三苯胺和吩噻嗪给体单元的太阳能电池材料的设计以及器件性能,介绍了聚合物的HOMO和LUMO能隙值对其光谱和光电转换效率的影响,并指出了该研究领域目前存在的问题及今后的发展方向。 Low band gap conjugated polymer materials have attracted great interest in the research field of novel solar cells due to their spectrum matching the solar spectrum. Design and device of various types of low band gap polymer materials are summarized briefly, according to different donor units, such as fluorene, silafluorene carbazole, cyelopenta[2,1-b: 3,4-b']dithiophene(CPDT), triarylamine and phenothiazine-based polymers. The magnitude of the hand gap and the energy positions of the HOMO and LUMO energy levels are the most important characteristics for determining the optical and electrical properties of a given eoniugated polymer. These in turn greatly influence the ulti- mate power conversion efficiency. The existing problems and future prospect of this kind of materials are discussed.
出处 《材料导报》 EI CAS CSCD 北大核心 2012年第9期142-147,共6页 Materials Reports
基金 国家自然科学基金(20802010 21172047) 广东省自然科学基金(07300884)
关键词 窄带隙 共轭聚合物 太阳能电池 光电转换效率 low band gap, conjugated polymer, solar cells, power conversion efficiency
  • 相关文献

参考文献28

  • 1Li G, Shrotriya V, Yang Y, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005,4 : 864.
  • 2Koster L J A, Mihailetchi V D, Blom P W M. Ultimate ef- ficiency of polymer/fullerene bulk heterojuntion solar cells [J ]. Appl Phys Lett, 2006,88..093511.
  • 3Liang Y, Feng D, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and elec-tronic properties[J]. J Am Chem Soc, 2009,131: 7792.
  • 4Zhao G J, He Y J, Li Y F. 6.5% Efficiency of polymer so- lar cells based on poly (3-hexylthiophene) and indene-C60 bisadduct by device optimization[J]. Adv Mater, 2010, 22:4355.
  • 5Scherf U, List E J W. Semieonducting polyfluorenes--To- wards reliable structure-property relationships[J]. Adv Ma- ter, 2002,14 : 477.
  • 6Svensson M, Zhang F L, Veenstra S C, et al. High-per- formance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Adv Mater, 2003, 15(12) :988.
  • 7Wang X J, Perzon E, Delgado J L, et at. Infrared photocur- rent spectral response from plastic solar cell with low-band- gap polyfluorene and fullerene derivative[J]. Appl Phys Lett,2004,85(21) :5081.
  • 8Zhang F L, Perzon E, Wang X J, et al. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850nm[J]. Adv Funct Mater, 2005,15(5) : 745.
  • 9Zhang F L, Mammo W, Andersson L M, et al. Low- bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells [J]. Adv Mater, 2006,18: 2169.
  • 10Wang F, Luo J, Yang K, et al. Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light- emitting diodes and bulk heterojunction photovoltaic cells macromolecules[J]. Macromolecular Chem Phys, 2005,38: 2253.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部