期刊文献+

一种基于密度的加权模糊均值聚类算法 被引量:8

Density Based Weighted Fuzzy Clustering Algorithm
下载PDF
导出
摘要 针对当数据集合中的数据属性差异不明显时,传统的均值聚类算法会收敛到局部最小值点,造成算法聚类结果不准、精度下降的问题,提出了一种基于密度的加权模糊均值聚类算法。该算法通过计算差异属性类中的相关密度,运用密度作为确定初始类中心的方法,得到了聚类效果更好的初始值。之后用加权模糊算法克服类划分中数据属性差异不明显带来的弊端,对类中差异属性进行归类划分。实验结果表明,该算法依然可以区分出不同属性的重要程度,而且其稳定性和聚类效果都有一定的提高。 The traditional clustering algorithm will converge to a local minimum point when the initial objects' attributes have no obvious difference,which can cause the decline of algorithms' accuracy and incorrectness of the results.In order to overcome these drawbacks,a density based weighted fuzzy c-mean clustering algorithm was proposed.It used the results of the calculation of the relative density differences attributes to determine the initial partition.After obtaining the better initial centers,a weighted fuzzy algorithm which can distinguish the importance of each attribute was implemented.Experimental results show that the algorithm not only can discriminate the attributes' contribution,but also can improve the stability and accuracy.
出处 《计算机科学》 CSCD 北大核心 2012年第5期180-182,共3页 Computer Science
基金 河南省重大科技攻关项目(102102210490)资助
关键词 聚类 模糊均值 属性加权 密度 误分类数 Clustering Fuzzy C-means Attribute weighted Density Number of misclassification
  • 相关文献

参考文献8

二级参考文献46

  • 1BREUNIG M M,KRIEGEL H-P,NG R T,et al.LOF:Identifying Density-Based Local Outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.Dallas,Texas,USA:ACM,2000:93-104.
  • 2RAM A,SHARMA A,JALAL A S,et al.An Enhanced Density Based Spatial Clustering of Applications with Noise[C]// IEEE International Advance Computing Conference.Patiala,India:IEEE Computer Society,2009:1475-1478.
  • 3UNCU O,GRUVER W A,KOTAK D B,et al.GRIDBSCAN:GRId Denstiy-Based Spatial Clustering of Applications with Noise[C]// IEEE International Conference on Systems,Man and Cybernetics,Taipei,Taiwan:IEEE Computer Society,2006:2976-2981.
  • 4ESTER M,KRIEGEL H-P,SANDER J,et al.A Deusity-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining,Portland,Oregon,USA:AAAI Press,1996:226-231.
  • 5KIM H S,GAO S,XIA Y,et al.DGCL:An Efficient Density and Grid Based Clustering Algorithm for Large Spatial Database[C]//7th International Conference on Advances in Web-Age Information Management,Hong Kong,China:LNCS 4016 Springer,2006:362-371.
  • 6BECKMANN N,KRIEGEL H-P,SCHNEIDER R,et al.The R *-tree:An Efficient and Robust Access Method for Points and Rectangles[C]// Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data,Atlantic City,NJ,USA:ACM Press,1990:322-331.
  • 7WANG W,YANG J,MUNTZ R.STING:A Statistical Information Grid Approach to Spatial data Mining[C]//Proceedings of 23rd International Conference on Very Large Data Bases,Athens,Greece:Morgan Kaufmann,1997:186-195.
  • 8SHEIKHOLESLAMI G,CHATTERJEE S,ZHANG A.Wavecluster:A Multi-Resolution Clustering Approach for Very Large Spatial Database[C]// Proceedings of 24rd International Conference on Very Large Data Bases,New York,USA:Morgan Kaufmann,1998:428-439.
  • 9AGRAWAL R,GEHRKE J,GUNOPULOS D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[C]//Proceedings of 24rd International Conference on Very Large Data Bases,New York,USA:Morgan Kaufmann,1998:94-105.
  • 10ZHAO Y C,SONG J.GDILC:A Grid-based Density-Isoline Clustering Algorithm[C]// International Conferences on Info-tech & Info-net,Beijing,China:[s.n.],2001:140-145.

共引文献137

同被引文献53

引证文献8

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部