期刊文献+

非对称数字签名技术在配电自动化系统的应用 被引量:12

The Applications of Asymmetric Encryption of Digital Signature Technology in Distribution Automation System
下载PDF
导出
摘要 随着智能电网技术的发展,配电自动化系统规模日益扩大,多种通信方式并存及所有报文均采用明文传输的通信方式导致系统受到各种网络攻击的风险较大,因此在配电自动化系统中引入了基于非对称加密技术的ECC椭圆曲线数字签名算法,在配电自动化系统的控制指令传输报文采用单向认证+数字签名的方式对系统进行防护,以免因系统攻击而影响系统的安全运行。 With the development of smart grid technology and the increasing size of the distribution automation system, The coexistence of a variety of communication methods are used and all messages transmitted in the clear cause the system to be at greater risk of a variety of network attacks, therefore, we use the asymmetric cryptography ECC Elliptic Curve Digital Signature Algorithm for Security of the distribution automation system. In the distribution automation system control commands using one-way message transmission Certification with digital signature to the system protection, so as to avoid system attacks affecting the safe operation of the system. This paper describes the ECC Digital Signature Algorithm applications in distribution automation systems and it's implementations.
出处 《电气自动化》 2012年第3期39-41,共3页 Electrical Automation
关键词 ECC 数字签名 配电自动化 智能电网 二次安防 遥控加密 ECC Digital Signature Distribution Automation Smart Grid Secondary Security Control Commands Encryption
  • 相关文献

参考文献3

二级参考文献13

  • 1William J C, Edward P D, Scott A R, et al. PKI Elliptic Curve Cryptography, and Digital Signatures [J]. Computers and Security, 1999,18: 47-66.
  • 2Microprocessor,Microcomputer Standards Committee of the IEEE Computer Society.IEEE Standard Specifications for Public-Key Cryptography[DB/OL].http://intl.ieeexplore.ieee.org.2000-01-30.
  • 3Lu Kai-ceng. Computer Cryptography-Data Secrecy and Security in Computer Network(Second Edition)[M]. Beijing:Tsinghua University Press, 1998(Ch).
  • 4Koyama K,Maurer U M,Okamoto T,et al.New Publickey Schemes Based on Elliptic Curves Over the Ring Zn [A].Crypto′91 [C]. New York: Springer-Verlag, 1991,1-13.
  • 5Smart N P. A Comparison of Different Finite Fields for Elliptic Curve Cryptosystems [J]. Computer and Mathematics with Application, 2001,42:91-99.
  • 6Essame Al-Daoud, Ramlan Mahmod, Mohammad Rushdan, et al. A New Addition Formula for Elliptic Curves over GF(2n)[J]. IEEE Transactions on Computers, 2002,51(8):972-975.
  • 7Bruce Schneir. Elliptic Curve Public-Key Cryptography Crypto-Gram Newsletter [DB/OL]. http://www.counterpane.com. 1999-11-15.
  • 8Bruce Schneir, Wu Si-zong, Zu Si-xiong, et al. Applied Cryptography: Protocols, algorithms, and source code in C(Second Edition)[M]. Beijing:China Machine Press, 2000(Ch).
  • 9Radia Perlman. An Overview of PKI Trust Models[J]. IEEE Network, 1999,13(6):38-43.
  • 10Sarbari Guta, Stephen M, Matyas Jr. Public Key Infrastructure Analysis of Existing and Needed Protocols and Object Formats for Key Recovery [J]. Computers and Security, 2000,19:56-68.

共引文献15

同被引文献101

引证文献12

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部